Pemanfaatan Biofertilizer pada Pertanian Organik

Pertanian organik semakin berkembang sejalan dengan timbulnya kesadaran akan pentingnya menjaga kelestarian lingkungan dan kebutuhan akan bahan makanan yang relatif lebih sehat. Pertanian organik itu sendiri adalah sistem produksi pertanian yang holistik dan terpadu, yang mengoptimalkan kesehatan dan produktivitas agro-ekosistem secara alami, sehingga mampu menghasilkan pangan dan serat yang cukup, berkualitas, dan berkelanjutan. Bioteknologi pertanian berpeluang besar untuk memajukan pertanian organik di Indonesia. Produk-produk bioteknologi yang dapat digunakan dalam pertanian organik antara lain adalah perakitan bahan tanaman unggul yang memiliki produktivitas tinggi dan resisten terhadap hama/penyakit, sehingga tidak memerlukan input pestisida sintetik. Dalam sistem pertanian organik yang tidak menggunakan masukan berupa bahan kimia buatan seperti pupuk kimia buatan dan pestisida, biofertilizer atau pupuk hayati menjadi salah satu alternatif yang layak dipertimbangkan. Beberapa mikroba tanah seperti seperti Rhizobium, Azaospirillum dan Azotobacter, bakteri pelarut fosfat, ektomikoriza, endomikoriza dan MVA, mikoriza perombak selulosa dan efektif mikroorganisme dapat dimanfaatkan sebagai biofertizer pada pertanian organik.

 

Tabel Standart Mutu Pupuk Organik

 

Bioferlizer tersebut fungsinya antara lain untuk membantu penyediaan hara bagi tanaman, mempermudah penyerapan hara bagi tanaman, membantu dekomposisi bahan organik, menyediakan lingkungan rhizosfer yang lebih baik sehingga pada akhirnya akan mendukung pertumbuhan dan meningkatkan produksi tanaman. Pemanfaatan biofertizer pada pertanian organik harus lebih dikembangkan untuk mengurangi ketergantungan sistem pertanian organik yang lebih banyak memanfaatkan bahan organik dengan volume yang sangat besar serta mengefisienkan penggunaan bahan organik tersebut untuk memenuhi kebutuhan hara tanaman.

 

Peranan Biofertilizer

 

Pertanian organik dapat didefinisikan sebagai sistem pengolahan produksi pertanian yang holistik yang mendorong dan meningkatkan kesehatan agro-ekosistem termasuk biodiversitas, siklus biologi dan aktifitas biologi tanah. Dalam sistem pertanian organik masukan (input) dari luar (eksterna) akan dikurangi dengan cara tidak menggunakan pupuk kimia buatan, pestisida dan bahan sintetis lainya. Dalam sistem pertanian organik kekuatan hukum alam yang harmonis dan lestari akan dimanfaatkan untuk meningkatkan kualitas dan kuantitas hasil pertanian sekaligus meningkatkan ketahanan terhadap serangan hama dan penyakit.

 

Perkembangan Biofertilizer

 

Perkembangan biofertilizer saat ini di Dunia telah pesat. Berbagai negara seperti India, Thailand, Jepang, Cina, Brazil, Taiwan dan Negara maju lainnya telah lama beralih dari pupuk kimia ke arah pupuk biologi.

Pupuk biologi atau yang disebut juga dengan Biofertilizer dinilai lebih bermanfaat baik ke tanaman maupun ke lingkungan. Manfaat ke tanaman karena Biofertilizer mengandung sejumlah mikroba yang mampu menyediakan nutrisi bagi kebutuhan tanaman, seperti Nitrogen, fosfat, Kalium, dan Biohormon.

 

Beberapa Manfaat Biofertilizer

 

`Dari segi fungsi metabolisme dan manfaat bagi manusia,terutama pada bidang pertanian, mikroorganisme tanah dapat dikelompokan menjadi mikroorganisme yang merugikan dan mikroorganisme yang bermanfaat. Mikroorgnisme tanah yang menguntungkan ini dapat dikategorikan sebagai biofertilizer (pupuk hayati).

Secara garis besar dapat fungi yang menguntungkan dapat dibagi menjadi :

  1. penyediaan hara
  2. peningkatan ketersediaan hara
  3. pengontrol organisme pengganggu tanaman
  4. pengurai bahan organik dan pembentuk humus
  5. perombak persenyawaan agrokimia

 

 

 

Bakteri Rhizobium

 

Bakteri rhizobium adalah salah satu bakteri yang berkemampuan sebagai bakteri penyedia hara bagi tanaman. Bila bersimbiosis dengan tanaman legum, bakteri ini akan menginfeksi tanaman akar dan membentuk bintil akar di dalamnya. Perana rhizobium terhadap pertumbuhan tanaman khususnya berkaitan dengan ketersediaan nitrogen bagi tanaman inangnya.

 

Azospirillium dan Azotobacter

 

Azosprillium mempunyai potensi cukup besar untuk dikembangkan sebagai pupuk hayati. Bakteri ini bayak dijumpai berasosiasi dengan tanaman jenis rerumputan termasuk jenis serelia, tanaman jagung dan gandum. Sampai saat ini ada tiga spesies yang telah ditemukan dan mempunyai kemampuan dalam menghambat nitrogen, yaitu  azosprillium brasilense, A. Lipoferum, A. Amazonese.

 

Mikroba Pelarut Fosfat

Alam menyediakan mekanisme yang luar biasa. Di dalam tanah, terutama di daerah sekitar perakaran tanaman (rhizosphere) banyak ditemukan mikroba-mikroba yang dapat melarutkan fosfat dari sumber-sumber yang sukar larut. Mikroba ini akan melarutkan fosfat dan menyediakannya untuk tanaman.

Mikroba pelarut fosfat ditemukan dari berbagai kelompok mikroba, baik dari bakteri, kapang/jamur, maupun aktinomicetes. Mikroba-mikroba tersebut antara lain: (bakteri) Bacillus sp, Pseudomonas sp, (jamur) Aspergillus niger, Penicillium sp, Trichoderma sp. Mikroba-mikroba ini menghasilkan asam-asam organik atau senyawa lain yang bisa melarutkan fosfat. Mikroba pelarut fosfat sudah ditemukan sejak akhir perang dunia kedua oleh ilmuwan di Rusia. Sejak tahun 1940-an sudah diaplikasikan ke tanah-tanah pertanian di Eropa.

Di Indonesia yang merupakan wilayah tropis juga banyak ditemukan mikroba-mikroba pelarut fosfat. Saya selama bertahun-tahun menghabiskan waktu kuliah untuk mempelajari mikroba-mikroba ini. Saya mengisolasi mikroba palarut fosfat dari berbagai wilayah di Indonesia, terutama di daerah-daerah deposit fosfat alam, beberapa daerah-daerah marjinal, dan tanah-tanah di sekitar perkebunan. Mikroba-mikroba terbaik yang saya temukan kemudian digunakan sebagai biofertilizer, salah satunya Promi.

Mikroba-mikroba pelarut fosfat ini sangat luar biasa. Dari pengujian dengan media fosfat alam cair, mikroba pelarut fosfat dapat melarutkan fosfat dari fosfat alam. Konsentrasi fosfat terlarut di dalam media cair meningkat sejalan dengan lama inkubasi.

 

 

Mikoriza

 

Asosiasi simbiotik antara jamur dan sistim perakaran tanaman tinggi diistilahkan dengan mikoriza. Dalam fenomena ini jamur menginfeksi dan mengkoloni akar tanpa menimbulan nekrosis sebagaimana biasa terjadi pada infeksi jamur patogen, dan mendapat pasokan nutrisi secara teratur dari tanaman. Setidaknya ada dua jenis mikoriza yang sering dipakai untuk  biofertilizer, yaitu: ektomikoriza dan endomikoriza. Mikoriza berperan dalam melarutkan P dan membantu penyerapan hara P oleh tanaman. Selain itu tanaman yang bermikoriza umumnya juga lebih tahan terhadap kekeringan. Contoh mikoriza yang sering dimanfaatkan adalah Glomus spdan Gigaspora sp

 

Beberapa mikroba tanah mampu menghasilkan hormon tanaman yang dapat merangsang pertumbuhan tanaman. Hormon yang dihasilkan oleh mikroba akan diserap oleh tanaman sehingga tanaman akan tumbuh lebih cepat atau lebih besar. Kelompok mikroba yang mampumenghasilkan hormon tanaman, antara lain: Pseudomonas sp dan Azotobacter sp.

 

Cendawan Mikoriza Arbuskula (CMA) adalah salah satu tipe cendawan pembentuk mikoriza yang akhir-akhir ini cukup populer mendapat perhatian dari para peneliti lingkungan dan biologis. Cendawan ini diperkirakan pada masa mendatang dapat dijadikan sebagai salah satualternatif teknologi untuk membantu pertumbuhan, meningkatkan produktivitas dan kualitastanaman terutama yang ditanam pada lahan-lahan marginal yang kurang subur atau bekastambang/industri. Cendawan Mikoriza Arbuskular merupakan tipe asosiasi mikoriza yang tersebar sangat luas dan ada pada sebagian besar ekosistem yang menghubungkan antara tanaman dengan rizosfer. Simbiosis terjadi dalam akar tanaman dimana cendawan mengkolonisasi apoplast dan sel korteksuntuk memperoleh karbon dari hasil fotosintesis dari tanaman. CMA termasuk fungi divisi Zygomicetes, famili Endogonaceae yang terdiri dari Glomus, Entrophospora,Acaulospora, Archaeospora, Paraglomus, Gigaspora dan Scutellospora. Hifa memasuki selkortek akar, sedangkan hifa yang lain menpenetrasi tanah, membentuk chlamydospores. lebih dari 80% tanaman dapat bersimbiosis denganCMA serta terdapat pada sebagian besar ekosistem alam dan pertanian serta memiliki perananyang penting dalam pertumbuhan, kesehatan dan produktivitas tanaman.

 

Berdasarkan struktur dan cara cendawan menginfeksi akar, mikoriza dapat dikelompokkam ke dalam tiga tipe :

 

1. Ektomikoriza

2. Ektendomikoriza

3. Endomikoriza

 

Ektomikoriza mempunyai sifat antara lain akar yang kena infeksi membesar, bercabang, rambut-rambut akar tidak ada, hifa menjorok ke luar dan berfungsi sebagi alat yang efektif dalam menyerap unsur hara dan air, hifa tidak masuk ke dalam sel tetapi hanya berkembang di antara dinding-dinding sel jaringan korteks membentuk struktur seperrti pada jaringan Hartiq. Ektendomikoriza merupakan bentuk antara (intermediet) kedua mikoriza yang lain. Ciri-cirinya antara lain adanya selubung akar yang tipis berupa jaringan Hartiq, hifa dapat menginfeksi dinding sel korteks dan juga sel-sel korteknya. Penyebarannya terbatas dalam tanah-tanah hutansehingga pengetahuan tentang mikoriza tipe ini sangat terbatas. Endomikoriza mempunyai sifat-sifat antar lain akar yang kena infeksi tidak membesar, lapisanhifa pada permukaan akar tipis, hifa masuk ke dalam individu sel jaringan korteks, adanya bentukan khusus yang berbentuk oval yang disebut Vasiculae (vesikel) dan sistem percabangan hifa yang dichotomous disebut arbuscules (arbuskul). Hampir sebagian besar jenis tumbuhan berasosiasi dengan jamur tipe AM (Arbuskul Mikoriza),mulai dari paku-pakuan, jenis rumput-rumputan, padi, hingga pohon rambutan, mangga, karet,kelapa sawit, dll. Sedangkan beberapa keluarga (family) pohon tingkat tinggi yang biasa dijumpai pada tahap suksesi akhir bersimbiosa dengan jamur EM (Ekto Mikoriza), misalnya jenis-jenis meranti, kruing, kamper (jenis-jenis Dipterocarapaceae), pasang, mempening (jenis- jenis Fagaceae), pinus, beberapa jenis Myrtaceae (jambu-jambuan) dan beberapa jenis legum.

 

Mikoroza Perombak Selulosa

 

Pada saat ini jerami masih merupakan bahan yang umum digunakan sebagai sumber bahan organik pada tanah sawah. Jerami mengandung selulosa yang sangat tinggi sehingga memerlukan proses dekomposisi yang relatif lama. Beberapa mikroba seperti Trichoderma, Aspergillus, dan Penecillium mampu merombak selulosa menjadi bahan senyawa-senyawa monosakarida, alkohol, CO2 dan asam-asam organik laiinya dengan dikeluarkannya enzim selulase (Rao, 1994).

 

Dalam sistem pertanaian organik yang sebagian besar memanfaatkan bahan organik dengan volume yang cukup banyak sebagai sumber hara bagi tanaman, penggunaan biofertizer dapat merupakan upaya efisensi penggunaan bahan organik tersebut. Selain dapat memperkecil volume bahan organik yang dibutuhkan dalam sistem pertanian organik juga dapat mempercepat proses dekomposisi bahan organik

 

Mikroorganisme Efektif

 

Mikroorganisme efektif (EM) merupakan kultur campuran beberapa jenis mikroorganisme yang bermanfaat (bakteri fotosintetik, bakteri asam laktat, dan jamur peragian) yang dapatdimanfaatkan sebagai inokulan untuk meningkatkan keragamanmikroba tanah. Pemanfaatan EM dapat memperbaiki kualitas tanah dan selanjutna memperbaiki da meningkatkan produksi tanaman.

Pengaruh Mikroorganisme Efektif yag menguntungkan adalah sebagai berikut:

  1. Memperbaiki lingkungan fisik, kimia dan bilogi tanah serta menekan hama pertumbuhan penyakit
  2. Memperbaiki perkecambahan, pembungaan, pembentukan buah dan pematangan hasil
  3. Meningkatkan kapasitas fotositetis tanaman.
  4. meningkatkan bahan organik sebagai sumber pupuk

 

Keuntungan Pemanfaatan Biofertilizer

 

  1. Pemakaian pupuk anorganik (Urea, TSP, KCl, dll) dapat ditinggalkan
  2. Dapat meningkatkan kesuburan tanah dengan jalan memperbaiki struktur tanah dan mengoptimalkan mikroba yang bekerja dalam tanah
  3. Meningkatkan hasil panen
  4. ketersediaan hara makro dan mikro terpenuhi dan aktifitas mikroorganisme tanah untuk membantu kesuburan tanah juga terjaga.

 

Teknologi produksi Biofertilizer

 

Langkah-langkah utama membuat biofertilizer adalah sebagai berikut:

  1. Menentukan Mikroba Bahan Aktif
  2. Mengisolasi Mikroba Target
  3. Menyeleksi Mikroba Target
  4. Menentukan Metode dan Bahan Pembawa (carrier)
  5. Menentukan Metode Perbanyakan Secara Masal
  6. Membuat Prototipe
  7. Menguji Prototipe
  8. Pengujian Multi Komoditas, Multi Lokasi
  9. Pengembangan Produk

1. Menentukan Mikroba Bahan Aktif

 

Pertama adalah menentukan mikroba-mikroba apa yang akan digunakan sebagai bahan aktif biofertilizer. Pilihan yang biasa digunakan adalah mikroba penambat N, mikroba pelarut P, mikoriza, atau PGPR. Anda boleh saja berambisi untuk menggunakan semua kelompok mikroba. Tetapi untuk itu Anda juga perlu menyiapakn biaya-nya juga. Sejauh ini sangat jarang ada orang yang ahli di semua kelompok mikroba. Umumnya mereka fokus pada satu atau dua kelompok mikroba saja. Artinya, kalau Anda ingin mendapatkan semua kelompok mikroba, Anda juga harus mengumpulkan orang-orang yang ahli di bidangnya masing-masing. Cara yang lebih baik adalah bekerja dalam sebuah tim yang beranggotakan beberapa orang dengan keahliannya masing-masing. Pada tahap ini ditentukan juga tanaman targetnya, bisa untuk tanaman tertentu atau untuk beberapa tanaman. Pilih tanaman yang paling memiliki nilai strategis dan ekonomis. Jangan terlalu berambisi untuk membuat biofertilizer untuk semua jenis tanaman. Misalnya untuk tanaman kelapa sawit.

 

Gambar mikroskopik VAM /Mikoriza

2. Mengisolasi Mikroba Target

Langkah berikutnya adalah melakukan isolasi mikroba-mikroba target tersebut. Mikroba-mikroba umumnya diisolasi dari Rhizosphere atau daerah di sekitar perakaran. Untuk mikroba-mikroba yang bersimbiosis diisolasi dari akarnya langsung, seperti Rhizobium atau mikoriza. Atau mikroba yang hidup dipermukaan akar tanaman. Tanah-tanah sampel dikumpulkan dari berbagai tempat yang memiliki kondisi tanah, iklim, dan komoditas yang berbeda-beda. Tanah-tanah yang memiliki kondisi ekstrim bisa juga dipilih

Setiap jenis mikroba memiliki metode isolasi sendiri-sendiri. Mentode ini sudah berkembang selama bertahun-tahun oleh para ahli. Misalnya untuk mikroba pelarut fosfat, medium yang sering digunakan adalah medium Pikovskaya. Tahap isolasi ini tujuannya adalah mendapatkan mikroba target sebanyak-banyaknya, baik dari jenis fungi, bakteri, atau aktinomicetes. Kegiatan ini bisa makan waktu lama sekali. Sering diulang-ulang dan untung-untungan hingga benar-benar mendapatkan mikroba yang diinginkan. Tahap ini juga banyak menghabiskan bahan. Tahap isolasi ini termasuk juga tahap pemurnian isolat yang diperoleh.

 

 

Mikroba palarut fosfat akan membentuk zona jernih pada medium Pikovskaya

Mikroba yang telah berhasil diisolasi kemudian diperbanyak, disimpan dan dipelihara. Jangan sampai isolat yang Anda peroleh mati, karena akan membuat semua biaya, tenaga, dan pikiran yang telah dikeluarkan jadi sia-sia. Penyimpanan yang agak sulit umumnya untuk mikroba-mikroba yang bersimbiosis dengan tanaman, apalagi obligat lebih repot lagi.

3. Menyeleksi Mikroba Target

Menyeleksi mikroba merupakan langkah yang sangat penting. Tujuannya adalah mendapatkan mikroba yang benar-benar unggul. Mikroba unggul adalah kunci dari kualitas biofertilizer yang ingin Anda buat. Banyak orang yang memproduksi biofertilizer, tetapi umumnya biasa-biasa saja. Seleksi juga sama sulitnya dengan mengisolasi mikroba. Waktu, tenaga, pikiran dan biaya yang dikeluarkan juga besar. Tapi jika berhasil, aku rasa akan setimpal dengan semua yang telah dikeluarkan.

Metode seleksi mikroba bermacam-macam, sama seperti metode isolasinya. Seleksi bisa dilakukan dalam beberapa tahap. Misalnya: 1) tahap laboratorium, 2) tahap rumah kaca, dan 3) uji coba skala lapang. Teknik seleksi biasanya diawali dengan seleksi kasar tujuannya untuk mendapatkan kandidat-kandidat mikroba unggul. Seleksi bisa dilakukan secara sederhana di dalam cawan petri, kemudian dilanjutkan dengan menggunakan erlenmeyer. Misalnya untuk mikroba penambat N, parameter yang digunakan adalah kemampuan untuk memfiksasi nitrogen. Sebagai langkah awal sebagai tolok ukur bisa menggunakan hasil yang pernah dilaporkan oleh orang lain. Pilih semua mikroba yang berada di atas batas itu. Langkah ini bisa dilakukan berulang-ulang hingga mendapatkan mikroba yang benar-benar unggul.

Setelah seleksi di laboratorium dalam skala kecil selanjutnya adalah seleksi di rumah kaca. Kalau dalam seleksi sebelumnya yang diuji kemampuannya untuk memfiksasi nitrogen, melarutkan P, atau menghasilkan hormon, misalnya; maka langkah berikutnya adalah apakah benar mikroba itu bisa memberikan manfaat untuk tanaman. Seleksi masih dilakukan di rumah kaca yang kondisinya terkontrol. Di tahap ini tidak jarang mikroba yang unggul di cawan petri, tiba-tiba loyo di rumah kaca. Ibaratnya dia hanya ‘jago kandang’, ketika dilepas di ‘alam bebas’ mereka loyo. Tapi umumnya mikroba yang bagus di laboratorium, bagus juga di rumah kaca. Di sini juga dipilih beberapa mikroba. Jangan hanya pilih satu, karena belum tentu ini yang terbaik jika dilepas di ‘alam liar’.

Jika ingin mengabungkan beberapa mikroba, baik untuk mikroba yang memiliki kemampuan sama (misal, sama-sama penambat N) maupun berbeda (penambat N + pelarut P), maka perlu dilakukan ujicoba kompatibilitas terelebih dahulu. Dua atau lebih mikroba diuji coba untuk menjawab pertanyaan apakah jika mikroba-mikroba tersebut akan memberikan pengaruh yang signifikan daripada jika mikroba-mikroba tersebut digunakan sendiri-sendiri. Pengujian bisa dilakukan di laboratorium maupun di rumah kaca.

Untuk lebih mudahnya saya berikan ilustrasi sebagai berikut, misalnya kita memiliki mikroba A dan B. Mikroba A secara signifikan dapat meningkatkan produksi hingga 20% dibanding kontrol. Demikian pula mikroba B secara signifikan dapat meningkatkan produksi hingga 25% dibanding kontrol. Belum tentu jika mikroba ini digabungkan maka hasilnya akan 20% + 25%. Bisa jadi akan tetap saja sama atau bahkan akan negatif hasilnya.

Ujicoba di rumah kaca juga sering dilakukan dalam bentuk prototipe mikroba yang telah disimpan dalam bawan pembawa Penjelasn tentang bahan pembawa saya uraikankan dibagian bawah. Seleksi berikutnya adalah seleksi di lapang. Seleksi di rumah kaca akan saya jelaskan nanti di bagian yang lain.

Proses seleksi ini harus dilakukan dengan sungguh-sungguh mengikuti kaidah-kaidah ilmiah dan menggunakan prosedur statistik yang benar. Kita harus benar-benar yakin, bahwa mikroba yang kita pilih adalah mikroba yang benar-benar unggul. Jika perlu dilakukan beberapa kali ujicoba untuk lebih menyakinkan. Kesalahan dalam seleksi akan membuat pekerjaan kita jadi sia-sia. Apalagi jika kita sudah melangkah cukup jauh.

4. Menentukan Metode Dan Bahan Pembawa (Carrier)

Berikutnya adalah bagaimana mikroba ini akan ‘dikemas’. Pilihan yang umum adalah dikemas dalam bentuk padat, serbuk, granul, pelet, tablet, atau cair. Saya belum pernah menemukan produk biofertilizer dalam bentuk gel. Banyak pertimbangan untuk menentukan dalam bentuk apa biofertilizer akan dikemas. Salah satunya adalah karakteristik dari mikroba tersebut. Sebagai contoh: ektomikoriza umumnya dibuat dalam bentuk padat, pelet, atau tablet; endomikoriza umumnya padat; biofertilizer berbahan aktif bakteri dan fungi bisa padat atau cair.

Metode pengemasan ini berkaitan erat dengan bahan pembawa apa yang akan digunakan. Saya tidak banyak memiliki pengalaman untuk biofertilzer dalam bentuk cair. Saya akan lebih banyak memberikan contoh untuk biofertilizer dalam bentuk padat. Formula bahan pembawa umumnya merupakan ‘rahasia perusahaan’. Kalau anda coba mencarinya di jurnal-jurnal ilmiah akan sangat jarang ditemukan. Pertanyaan kuncinya adalah membuat formula bahan pembawa yang bisa melindungi mikroba dalam waktu lama (>12 bulan), tetap memiliki viabilitas dan efektivitas tinggi. Ini bukan perkerjaan yang mudah.

Cara paling gampang adalah dengan mempelajari dari produk biofertilizer yang sudah ada di pasaran. Coba amati dan perkirakan kira-kira terbuat dari apa bahan pembawa itu. Memang biasanya ada semacam ‘resep rahasia’ yang sulit dideteksi, tapi ini merupakan awal yang sangat bagus untuk mulai. Umumnya bahan pembawa yang sering digunakan adalah bahan-bahan organik, mineral, atau liat. Bahan organik bisa tepung-tepungan: terigu, tapioka, maizena, sagu, atau tepung kompos, gambut, dll. Bahan mineral biasanya zeolit (biasa digunakan untuk mikoriza), gypsum, bentonit, kapur dan lainnya. Ada juga yang mengguanakan tanah liat tertentu, seperti untuk endomikoriza. Bahan-bahan ini bisa tunggal atau bisa juga merupakan campuran dari beberapa bahan. Ada juga yang memberikan tambahan nutrisi pada bahan pembawa tersebut.

Beberapa pertimbangan lain untuk memilih bahan pembawa adalah kemampuan dalam mempertahankan viabilitas dan efektivitas mikroba. Dan yang tak kalah penting adalah pertimbangan ekonomi. Mungkin saja bahan pembawanya sangat bagus, tetapi kalau harganya mahal jadi tidak bisa dijual. Setiap bahan juga memiliki keunggulan dan kelemahannya masing-masing. Misalnya bahan organik cukup bagus, tetapi bahan ini juga disukai oleh banyak organisme. Rasanya cukup sulit untuk mempertahankan kondisinya optimum dan terhindar dari kontaminasi.

Untuk menguji viabilitas biasanya diukur jumlah populasi mikroba dalam rentang waktu penyimpanan. Bisa setiap bulan, setiap tiga bulan hingga satu tahun lamanya. Waktu penyimpanan satu tahun sudah cukup bagus. Kemudian pengujian evektivias mikroba tersebut terhadap tanaman target. Langkah membuat formulasi bahan pembawa ini bisa dilakukan sambil melakukan seleksi mikroba. Terutama jika sudah diketahui jenis mikrobanya. Jadi dilakukan secara pararel.

5. Menentukan Metode Perbanyakan Secara Masal

Setelah kita mendapatkan mikroba unggul dan bawah pembawa yang sesuai, langkah penting lainnya adalah mendapatkan metode berbanyakan mikroba secara massal. Pada tahap-tahap sebelumnya perbanyakan mikroba dilakukan dengan menggunakan bahan-bahan kimia sesaui dengan standard baku mikrobiologi. Bahan-bahan kimia ini harganya cukup mahal dan sangat tidak ekonomis jika digunakan untuk produksi massal. Oleh karena itu perlu dilakukan pula riset untuk memproduksi mikroba tersebut dalam skala besar.

Metode umum untuk memproduksi mikroba antara lain adalah fermentasi cair dan fermentasi padat. Bakteri dan aktinomycetes umumnya diproduksi dalam medium cair, sedangkan kapang dan jamur diproduksi dalam medium padat. Mikroba yang bersimbiosis dengan tanaman, seperti mikoriza, diproduksi bersama dengan tanaman inangnya. Pemilihan bahan media untuk memproduksi mikroba ini tergantung pada metode produksinya. Cobalah untuk menganti media bahan kimia dengan media dari bahan-bahan yang murah dan mudah didapat. Pekerjaan ini merupakan ‘seni’ tersendiri. Diperlukan kejelian dan ketekunan untuk mendapatkannya.

Selain media, kondisi kultur mikroba juga perlu diperhatikan. Misalkan apakah mikroba tersebut memerlukan aerasi atau bahkan perlu kondisi yang anaerob. Berapa suhu yang paling optimal untuk berkembang biak? Berapa waktu yang tepat untuk panen? Bagaimana cara pemanenannya? Dan pertanyaan-pertanyaan lain. Salah satu pertimbangan untuk menentukan metode perbanyakan adalah pertimbangan ekonomi. Berapa biaya yang diperlukan untuk memproduksi 1 kg produk biofertilizer. Secara umum, jika menggunakan banyak mikroba akan meningkat pula biaya produksinya.

6. Membuat Prototipe

Kalau sudah ketemu kandidat-kandidat mikroba bahan aktif dan bahan pembawanya, langkah berikutnya adalah membuat prototipe. Prototipe bisa terdiri dari beberapa contoh. Contoh-contoh ini mungkin sudah diseleksi dari beberapa percobaan dan dianggap sebagai hasil terbaik, misal: lima prototipe terbaik. Contoh biofertilizer dalam bentuk: cair, granul, serbuk, dan pelet. Atau bisa saja satu bentuk tetapi dengan beberapa formula, misal: cair A, cair B, cair C, dan seterusnya. Prototipe ini yang selanjutnya harus diuji dan dipilih mana prototipe yang akan menjadi produk akhir.

7. Menguji Prototipe

Pengujian prototipe pertama bisa dilakukan di rumah kaca dengan tanaman-tanaman target atau tanaman model. Jangan lupa untuk menggunakan prosedur statistik dengan benar dan teliti. Jika ragu-ragu, ulangi lagi percobaan rumah kaca ini. Kadang-kadang peneliti bisa bias dalam analisa. Gunakan prosedur statistik sebagai alat untuk mengambil keputusan. Tapi jangan terlalu percaya statistik. Gunakan juga intuisi atau feeling atau firasat. Bedakan antara opini dan data. Fokus pada data-nya.

Ketika melakukan pengujian, amati pula tanamannya. Kalau anda dibantu oleh teknisi atau pembantu teknisi, jangan hanya lihat datanya saja. Sempatkan untuk melihat tanamannya. Bandingkan hasil analisa statistik dengan pengamatan Anda. Apakah ada yang janggal, ada yang berbeda, atau ada yang istimewa.

Dalam tahap ini, bisa saja sebuah prototipe diperbaiki. Sebagai contoh: pupuk organik bentuk serbuk memberikan hasil yang lebih baik dibandingkan bentuk granul. Tetapi masa simpannya lebih pendek daripada bentuk granul. Anda bisa melakukan modifikasi pada bentuk curah atau granulnya. Coba teliti lagi lebih seksama pada prototipe tersebut. Apakah granulnya terlalu keras, sehingga sulit hancur ketika berada di tanah dan akhirnya membuat efektifitasnya rendah. Langkah perbaikannya adalah membuat granul yang lebih mudah hancur.

8. Pengujian Multi Komoditas, Multilokasi

Apabila prototipe lolos dari pengujian di rumah kaca, langkah berikutnya adalah pengujian lapang. Pengujian bisa dilakukan di kebun percobaan, tetapi skalanya kecil. Kalau percobaan ini mendapatkan hasil yang konsisten, coba lagi di tempat yang lebih luas atau diulang di tempat yang berbeda-beda. Bisa juga Anda mencobanya dengan varietas yang berbeda, lokasi yang berbeda, cara budidaya yang berbeda, bahkan dengan komoditas yang berbeda. Ingat, gunakan prosedur statistik dengan benar dan teliti, tetapi jangan diperbudak oleh statistik.

Pada tahap ini sebenarnya bisa juga dilakukan pengujian pasar. Apakah calon konsumen mau menerima produk ini? Apakah cara atau metode penggunaanya bisa diterima oleh konsumen? Bagaimana dengan harga? Bagaimana dengan warna? Bagaimana dengan kemasannya? Bagaimana dengan ukuran kemasan? Bagaimana dengan nama? Dan lain-lain.

9. Pengembangan Produk

Apabila mikroorganisme yang diinokulasikan cukup efektif dalam meningkatkan hasil produksi tanaman, maka selanjutnya mengembangka metode daam skala jumlah besar. Pada umumnya mikroorganisme akan berkembang melalui proses fermentasi. Apabila populasi mikroorganisme mencapai ukuran tertentu, maka selanjutnya adalah memanen dan mengemas hasil produksi.

 

Teknik Pemanfaatan Biofertilizer

 

Mikroorganisme hasil inokulasi dari tanah pada kondisi laboratorium menggunakan media buatan. Setelah mikroorganisme tersebut berhasil dibiakan, maka diperoleh galur yang dikehendaki. karena tidak semua spesies dari suatu populasi bersifat efektif. Selanjutnya galur yang efektif di isolasi, dan dilakukan pengujian di lapangan apakah hasil inokulasi harus sesuai dengan kondisi lingkungan tertentu, harus mampu menyesuaikan dengan fluktuasi kondisi lingkungan dan tidak kalah bersaing atau dimangsa mikroorganisme asli.

 

Apabila mikroorganisme yang di inokulasikan cukup efektif dalam meningkatkan hasi tanaman, maka tugas selanjutnya mengembangkan metode untuk memperbanyak dengan skala besar. Pada umumnya, mikroorganisme akan tumbuh dan berkembang melalui proses fermentasi. Apabila populasi mikroorganisme mencapai ukuran tertentu, kemudian tahap berikutnya adalah memanen dan mengemas untuk tujuan komersial. Tugas selanjutnya adalah membuat formula cara kerja inokulan, termasuk cara memanfaatkan inokulan di lapangan (disemprotkan ke tanah atau dicampur dengan biji), termasuk memecahkan semua masalah yang mungkin dihadapi dalam mempertahankan inokulan tetap efektif, terutama yang berhubungan dengan pengiriman, kemasan, penyimpanan, dan pemanfaatan.

 

Tabel Mekanisme Biofertilizer

 

 

 

 

 

Petani organik sangat menghindari pemakaian pupuk kimia. Untuk memenuhi kebutuhan hara tanaman, petani organik mengandalkan kompos sebagai sumber utama nutrisi tanaman. Sayangnya kandungan hara kompos rendah. Kompos matang kandungan haranya kurang lebih 1.69% N, 0.34% P2O5, dan 2.81% K. Dengan kata lain 100 kg kompos setara dengan 1.69 kg Urea, 0.34 kg SP36, dan 2.18 kg KCl. Misalnya, untuk memupuk padi yang kebutuhan haranya 200 kg Urea/ha, 75 kg SP 36/ha, dan 37.5 kg KCl/ha, membutuhkan sebanyak 22 ton kompos/ha. Jumlah kompos yang demikian besar ini memerlukan banyak tenaga kerja dan berimplikasi pada naiknya biaya produksi.

 

Mikroba-mikroba tanah banyak yang berperan di dalam penyediaan maupun penyerapan unsur hara bagi tanaman. Tiga unsur hara penting tanaman, yaitu Nitrogen (N), fosfat (P), dan kalium (K) seluruhnya melibatkan aktivitas mikroba. Hara N tersedia melimpah di udara. Kurang lebih 74% kandungan udara adalah N. Namun, N udara tidak dapat langsung dimanfaatkan tanaman. N harus ditambat oleh mikroba dan diubah bentuknya menjadi tersedia bagi tanaman. Mikroba penambat N ada yang bersimbiosis dan ada pula yang hidup bebas. Mikroba penambat N simbiotik antara lain Rhizobium yang hidup di dalam bintil akar tanaman kacang-kacangan (leguminose). Mikroba penambat N non-simbiotik misalnya Azospirillum dan Azotobacter. Mikroba penambat N simbiotik hanya bisa digunakan untuk tanaman leguminose saja, sedangkan mikroba penambat N non simbiotik dapat digunakan untuk semua jenis tanaman.

 

Mikroba tanah lain yang berperan di dalam penyediaan unsur hara adalah mikroba pelarut fosfat (P) dan kalium (K). Tanah pertanian kita umumnya memiliki kandungan P cukup tinggi (jenuh). Namun, hara P ini sedikit/tidak tersedia bagi tanaman karena terikat pada mineral liat tanah.

 

Di sinilah peranan mikroba pelarut P. Mikroba ini akan melepaskan ikatan P dari mineral liat dan menyediakannya bagi tanaman. Banyak sekali mikroba yang mampu melarutkan P, antara lain Aspergillus, Penicillium, Pseudomonas, dan Bacillus Megatherium. Mikroba yang berkemampuan tinggi melarutkan P, umumnya juga berkemampuan tinggi dalam melarutkan K. Kelompok mikroba lain yang juga berperan dalam penyerapan unsur P adalah Mikoriza yang bersimbiosis pada akar tanaman. Setidaknya ada dua jenis mikoriza yang sering dipakai untuk biofertilizer, yaitu ektomikoriza dan endomikoriza.

 

Mikoriza berperan dalam melarutkan P dan membantu penyerapan hara P oleh tanaman. Selain itu, tanaman yang bermikoriza umumnya juga lebih tahan terhadap kekeringan. Contoh mikoriza yang sering dimanfaatkan adalah Glomus dan Gigaspora.

 

Beberapa mikroba tanah mampu menghasilkan hormon tanaman yang dapat merangsang pertumbuhan tanaman. Hormon yang dihasilkan oleh mikroba akan diserap oleh tanaman sehingga tanaman akan tumbuh lebih cepat atau lebih besar. Kelompok mikroba yang mampu menghasilkan hormon tanaman antara lain Pseudomonas dan Azotobacter. Mikroba-mikroba bermanfaat tersebut diformulasikan dalam bahan pembawa khusus dan digunakan sebagai biofertilizer. Dari hasil penelitian yang telah dilakukan, biofertilizer setidaknya dapat menyuplai lebih dari setengah kebutuhan hara tanaman.

 

Pemanfaata pupuk asil biofertilizer pada pertanian

 

 

 

Contoh pupuk organik

 

 

 

 

Perkembangan Biofertilizer

 

Perkembangan biofertilizer saat ini di Dunia telah pesat. Berbagai negara seperti India, Thailand, Jepang, Cina, Brazil, Taiwan dan Negara maju lainnya telah lama beralih dari pupuk kimia ke arah pupuk biologi.

Pupuk biologi atau yang disebut juga dengan Biofertilizer dinilai lebih bermanfaat baik ke tanaman maupun ke lingkungan. Manfaat ke tanaman karena Biofertilizer mengandung sejumlah mikroba yang mampu menyediakan nutrisi bagi kebutuhan tanaman, seperti Nitrogen, fosfat, Kalium, dan Biohormon.

Grafik Perkembangan Pemanfaatan Biofertilizer pada Pertanian Organik

 

Kajian Islam Dalam Mikroorganisme

 

Surat Al-Baqoroh ayat 164

 

 

Sesungguhnya dalam penciptaan langit dan bumi, silih bergantinya malam dan siang, bahtera yang berlayar di laut membawa apa yang berguna bagi manusia, dan apa yang Allah turunkan dari langit berupa air, lalu dengan air itu Dia hidupkan bumi sesudah mati (kering)-nya dan Dia sebarkan di bumi itu segala jenis hewan, dan pengisaran angin dan awan yang dikendalikan antara langit dan bumi; sungguh (terdapat) tanda-tanda (keesaan dan kebesaran Allah) bagi kaum yang memikirkan.

 

Surat  Al-Imron ayat 191

 

(yaitu) orang-orang yang mengingat Allah sambil berdiri atau duduk atau dalam keadan berbaring dan mereka memikirkan tentang penciptaan langit dan bumi (seraya berkata): “Ya Tuhan kami, tiadalah Engkau menciptakan ini dengan sia-sia, Maha Suci Engkau, maka peliharalah kami dari siksa neraka.

 

Surat Al-Furqon ayat 2

yang kepunyaan-Nya-lah kerajaan langit dan bumi, dan Dia tidak mempunyai anak, dan tidak ada sekutu bagiNya dalam kekuasaan(Nya), dan dia telah menciptakan segala sesuatu, dan Dia menetapkan ukuran-ukurannya dengan serapi-rapinya.

Dalam ketiga surat tersebut dijelaskan bahwa Alloh menciptakan langit dan bumi beserta isinya untuk kesejahteraan umat manusia dan Alloh menciptakan sesuatu itu mempunyai peranan atau fungsi masing-masing dalam kehidupan manusia dan Alloh menciptakan sesuatu itu tidak dengan sia-sia contohnya adalah mikroorganisme selain sebagai parasit mereka juga dapat dimanfaatkan dalam bidang kesehatan dan penelitian seperti pembuatan pupuk organik,fermentasi,pembuatan obat,pembuatan makanan dll.

 

 

 

DAFTAR PUSTAKA

 

 

Gunalan. 1996. Penggunaan mikroba bermanfaat pada bioteknologi tanah berwawasan lingkungan. Majalah sriwijaya vol 32. No 2

 

Prihatini, T, A. Kentjanasari dan Subowo 1996. Pemanfaatan biofertilizer untuk peningkatan produktivitas lahan pertanian.

 

Sutanto R. 2002. Penerapan pertanian organik. Kanisius:Yogyakarta

 

Rao, N.S.S. 1994. Soil microorganism and plant growth. Oxford and IBM publishing CO.(terjemahan Susilo. Mikroorganisme tanah dan pertumbuhan tanaman. Universitas indonesia)

 

Anonymous 2010. http://hendri-wd.blogspot.com/2010/05/peranan-biofertilizer-pada-pertanian.html Diakses tgl 10 desember 2011 jam 18.00

 

Anonymous 2009. http://belantik.webs.com/apps/blog/show/3917626 Diakses tgl 10 desember 2011 jam 18.00

 

Anonymous 2009. http://isroi.wordpress.com/2009/05/21/mikroba-pelarut-fosfat-untuk-memenuhi-kebutuhan-pupuk-fosfat/  Diakses tgl 10 desember 2011 jam 18.00

Anonymous 2009. http://carabudidaya.com/bioteknologi-berbasis-mikroba/ diakses tanggal 16 desember 2011

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: