Archive for 2011

PEMANFAATAN MIKROBIOLOGI DI BIDANG FARMASI DAN PRODUKNYA

PEMANFAATAN MIKROBIOLOGI DI BIDANG FARMASI DAN PRODUKNYA

PEMANFAATAN MIKROBIOLOGI DI BIDANG FARMASI DAN PRODUKNYA

Peranan Jamur Ragi Saccharomyces cerevisiae sebagai fermentasi roti

Domain                       : Eukaryota

Kingdom                    : Fungi

Subkingdom              : Dikarya

Phylum                       : Ascomycota

Subphylum                : Saccharomycotina

Class                           : Saccharomycetes

Order                          : Saccharomycetales

Family                                    : Saccharomycetaceae

Genus                         : Saccharomyces

Specific descriptor     : cerevisiae

Scientific name          : - Saccharomyces cerevisiae

Saccharomyces adalah genus dalam kerajaan jamur yang mencakup banyak jenis ragi. Saccharomyces berasal dari bahasa Latin yang berarti gula jamur. Banyak anggota dari genus ini dianggap sangat penting dalam produksi makanan. Salah satu contoh adalah Saccharomyces cerevisiae, yang digunakan dalam pembuatan anggur, roti, dan bir. Anggota lain dari genus ini termasuk Saccharomyces bayanus, digunakan dalam pembuatan anggur, dan Saccharomyces boulardii, digunakan dalam obat-obatan. Koloni dari Saccharomyces tumbuh pesat dan jatuh tempo dalam 3 hari. Mereka rata, mulus, basah, glistening atau kuyu, dan cream untuk cream tannish dalam warna. Ketidak mampuan untuk memanfaatkan nitrat dan kemampuan untuk berbagai memfermentasi karbohidrat adalah karakteristik khas dari Saccharomyces.

Saccharomyces memproduksi ascospores, khususnya bila tumbuh di V-8 media, asetat ascospor agar, atau Gorodkowa media. Ascospores ini adalah bundar dan terletak di asci. Setiap ascus berisi 1-4 ascospores. Asci tidak menimbulkan perpecahan pada saat jatuh tempo. Ascospores yang berwarna dengan Kinyoun noda dan ascospore noda. Bila dikotori dengan noda Gram, ascospores adalah gram-negatif sedangkan sel vegetatif adalah gram positif.  Jamur Saccharomyces cerevisiae, atau di Indonesia lebih dikenal dengan nama jamur ragi, telah memiliki sejarah yang luar biasa di industri fermentasi. Karena kemampuannya dalam menghasilkan alkohol inilah, S. cerevisiae disebut sebagai mikroorganisme aman (Generally Regarded as Safe) yang paling komersial saat ini. Dengan menghasilkan berbagai minuman beralkohol, mikroorganisme tertua yang dikembangbiakkan oleh manusia ini memungkinkan terjadinya proses bioteknologi yang pertama di dunia. Seiring dengan berkembangnya genetika molekuler, S. cerevisiae juga digunakan untuk menciptakan revolusi terbaru manusia di bidang rekayasa genetika. S. cerevisiae yang sering mendapat julukan sebagai super jamur telah menjadi mikroorganisme frontier di berbagai bioteknologi modern.

S. cerevisiae adalah jamur bersel tunggal yang telah memahat milestones dalam kehidupan dunia. Jamur ini merupakan mikroorganisme pertama yang dikembangbiakkan oleh manusia untuk membuat makanan (sebagai ragi roti, sekitar 100 SM, Romawi kuno) dan minuman (sebagai jamur fermentasi bir dan anggur, sekitar 7000 SM, di Assyria, Caucasia, Mesopotamia, dan Sumeria). Di Indonesia sendiri, jamur ini telah melekat dalam kehidupan sehari-hari. Nenek moyang kita dan hingga saat ini kita sendiri menggunakannya dalam pembuatan makanan dan minuman, seperti tempe, tape, dan tuak.

Saccharomyces cereviciae yang penting dalam pembuatan roti memiliki sifat dapat memfermentasikan maltosa secara cepat (lean dough yeast), memperbaiki sifat osmotolesance (sweet dough yeast), rapid fermentation kinetics, freeze dan thaw tolerance, dan memiliki kemampuan memetabolisme substrat. Pemakaian ragi dalam adonan sangat berguna untuk mengembangkan adonan karena terjadi proses peragian terhadap gula, memberi aroma (alkohol). Saccharomyces cerevisiae juga telah digunakan dalam beberapa industri lainnya, seperti industri roti (bakery), industri flavour, (menggunakan ektrak ragi/yeast extracts), industri pembuatan alcohol (farmasi) dan industri pakan ternak.

  • Macam-macam Bentuk Ragi

a)      Ragi cair (liquid yeast) diproduksi dari yeast cream yang berlangsung pada tahap proses industri (mengandung 15– 20% materi kering). Ragi cair ini terutama digunakan oleh bakery skala industri dengan proses otomatis. Pengukuran secara otomatis membutuhkan peralatan tambahan khusus dan untuk penyimpanan dibutuhkan suhu 4o – 6oC dengan umur simpan hanya 2 minggu.

b)      Ragi basah (compressed atau fresh yeast) adalah yeast cream yang dikeringkan dan dipadatkan sehingga mengandung 28-35% materi kering, berbentuk blok-blok persegi, dan harus disimpan pada suhu 2-6 oC, dengan umur kadaluarsa hanya 2-3 minggu saja. Produk ini hanya mengandung 70% air, oleh karena itu ragi harus disimpan pada temperatur rendah dan merata untuk mencegah hilangnya daya pembentuk gas. Kelebihan penggunaan ragi basah adalah harganya relatif murah (karena sebagian besar terdiri dari air saja), dan dapat dipergunakan dalam banyak aplikasi (resep) .Sedangkan kekurangannya adalah sensitif terhadap kelembaban (humidity): suhu dan cuaca hangat seperti negara Indonesia yang tropis. Ragi ini juga memerlukan kondisi peyimpanan pada suhu rendah (2–6oC), yang menyebabkan kesulitan dalam pendistribusiannya, akan tetapi, ragi bisa tahan 48 jam pada suhu ruang.

c)      Ragi kering aktif (active dry yeast, ADY) adalah ragi yang terbuat dari yeast cream yang dipanaskan dan dikeringkan hingga didapatkan 92-93% bahan kering. Ragi ini berbentuk butiran kering (granular form). Dalam aplikasi penggunaannya harus dilarutkan dengan air hangat (dehidrated) sebelum dicampurkan dengan tepung terigu dan bahan lainnya ke dalam mixer. Penyimpanannya bisa dalam suhu ruang (selama jauh dari panas dan lembab). Umur kedaluarsanya mencapai 2 tahun dalam kemasannya. Pengeringannya dengan temperatur tinggi akan mematikan sekitar 25% lapisan luar sel ragi, sehingga membentuk lapisan sel pelindung yang dapat melindungi sel aktif. Kelebihan menggunakan ragi kering aktif adalah meringankan biaya transportasi, dan penyimpanannya tidak sulit (suhu ruang). Sedangkan kekurangannya adalah memerlukan proses rehidrasi dengan air hangat (35o – 38oC) dan proses tersebut memerlukan waktu sekitar 15 menit. Faktor konversinya adalah 1 kg ragi kering aktif sama dengan 2,5 – 3 kg ragi basah dengan ditambah air 1,5 liter.

d)     Ragi kering instan (instantdry yeast IDY). Dibuat dari ragi yang dipanaskan dan lalu dikeringkan hingga mengandung 94% – 95% materi kering dengan jumlah sel ragi 105-107 pergram ragi, berbentuk vermicelli (seperti potongan pasta yang sangat pendek), mendekati butiran kecil yang halus. Di negara-negara tropis lebih aman memakai ragi instan. Aplikasinya tanpa dilarutkan terlebih dahulu, dapat langsung dicampurkan dalam tepung, dikemas dalam kemasan tanpa udara (vacuum packed) dan memiliki umur kadaluarsa 2 tahun dalam kemasannya. Kelebihan lain dari pada ragi instan ini adalah menghasilkan fermentasi yang lebih konsisten, dan penyimpanan yang sangat mudah (pada suhu ruang normal).

Ragi yang sudah rusak tidak layak untuk digunakan dalam pembuatan makanan karena sudah tidak dapat berfermentasi lagi. Agar kondisinya tetap baik, ragi harus disimpan pada suhu 4,50C. Kondisi ragi akan semakin buruk apabila disimpan pada udara yang panas karena akan meyerap panas dan kemudian akan beremah. Adanya remah merupakan pertanda bahwa dalam diri ragi telah terjadi fermentasi yang dikenal dengan istilah autolysis yang disebabkan oleh enzim dari ragi itu sendiri. Pada akhirnya ragi akan berubah wujud menjadi massa yang sedikit lengket, berbau tidak enak, berwarna gelap dan tidak bermanfaat lagi. Ragi tidak boleh dicampur dengan garam, gula, atau larutan garam maupun gula yang pekat. Pada saat membuat adonan, sebaiknya ragi tidak langsung dicampur dengan kedua unsur tersebut (garam dan gula). Persentase rata-rata dari komposisi ragi adalah sebagai berikut:

- Air                : 68% – 73%

- Protein         : 12% – 14%

- Fat                : 0,6% – 0,8 %

- Karbohidrat : 9% – 11%

- Mineral         : 1,7% – 2%

  • Persyaratan Gizi

Semua strain S. cerevisiae  dapat tumbuh secara aerobik pada glukosa, maltosa , dan trehalosa dan lambat tumbuh pada laktosa dan selobiosa. Hal ini menunjukkan bahwa galaktosa dan fruktosa adalah dua dari gula fermentasi terbaik.  Kemampuan ragi untuk menggunakan gula yang berbeda dapat berbeda tergantung pada apakah mereka tumbuh aerobik atau anaerobik. Beberapa strain tidak dapat tumbuh secara anaerobik pada sukrosa dan trehalosa.

Semua strain S. cerevisiae  dapat memanfaatkan amonia dan urea sebagai satu-satunya sumber nitrogen, tetapi tidak dapat memanfaatkan nitrat, karena mereka tidak toleran terhadap ion ammonium.  Mereka juga dapat memanfaatkan sebagian besar asam amino, peptida rantai pendek, dan basa nitrogen sebagai sumber nitrogen. Histidin, glisin, sistin, dan lisin merupakan asam amino yang tidak mereka butuhkan. S. cerevisiae tidak mengeluarkan protease sehingga protein ekstraseluler tidak dapat dimetabolisme.

  • Fermentasi

Fermentasi merupakan kegiatan mikrobia pada bahan pangan sehingga dihasilkan produk yang dikehendaki. Mikrobia yang umumnya terlibat dalam fermentasi adalah bakteri, khamir dan kapang. Contoh bakteri yang digunakan dalam fermentasi adalah Acetobacter xylinum pada pembuatan nata decoco, Acetobacter aceti pada pembuatan asam asetat. Contoh khamir dalam fermentasi adalah Saccharomyces cerevisiae dalam pembuatan alkohol sedang contoh kapang adalah Rhizopus sp pada pembuatan tempe, Monascus purpureus pada pembuatan angkak dan sebagainya. Fermentasi dapat dilakukan menggunakan kultur murni ataupun alami serta dengan kultur tunggal ataupun kultur campuran.

Fermentasi menggunakan kultur alami umumnya dilakukan pada proses fermentasi tradisional yang memanfaatkan mikroorganisme yang ada di lingkungan. Salah satu contoh produk pangan yang dihasilkan dengan fermentasi alami adalah gatot dan growol yang dibuat dari singkong. Tape merupakan produk fermentasi tradisional yang diinokulasi dengan kultur campuran dengan jumlah dan jenis yang tidak diketahui sehingga hasilnya sering tidak stabil. Ragi tape yang bagus harus dikembangkan dari kultur murni.

Kultur murni adalah mikroorganisme yang akan digunakan dalam fermentasi dengan sifat dan karaktersitik yang diketahui dengan pasti sehingga produk yang dihasilkan memiliki stabilitas kualitas yang jelas. Dalam proses fermentasi kultur murni dapat digunakan secara tunggal ataupun secara campuran. Contoh penggunaan kultur murni tunggal  pada fermentasi kecap, yang menggunakan Aspergillus oryzae pada saat fermentasi kapang dan saat fermentasi garam digunakan bakteri Pediococcus sp dan khamir Saccharomyces rouxii.

Industri fermentasi dalam pelaksanaan proses dipengaruhi oleh beberapa faktor:

1. mikrobia

2. bahan dasar

3. sifat-sifat proses

4. pilot-plant

5. faktor sosial ekonomi

Dalam Industri Roti: Menggunakan enzim amilase dan protease untuk mempercepat proses fermentasi, meningkatkan volume adonan, memperbaiki kelunakan dan tekstur. Enzim bersumber dari jamur dan bakteri.

  • Fermentor

Fermentor yang digunakan dalam produksi etanol tergantung pada bahan baku yang digunakan. untuk penggunaan dengan bahan baku gula dapat langsung dengan fermentor anaerob, sedang jika akan digunakan dengan bahan baku dari pati atau karbohidrat lain harus ada proses sakarifikasi sehingga minimal ada dua fermentor. Fermentor adalah tempat berlangsungnya fermentasi dapat berupa alat dengan kerja anaerob ataupun anaerob.

  • Fermentasi dalam Pengolahan Roti

Proses fermentasi pada pengolahan roti sudah dilakukan sejak lama. Tahapan ini dilakukan untuk menghasilkan potongan roti (loaves) dengan bagian yang porus dan tekstur roti yang lebih lembut. Metode ini didasarkan pada terbentuknya gas akibat proses fermentasi yang menghasilkan konsistensi adonan yang frothy (porus seperti busa). Pembentukan gas pada proses fermentasi sangat penting karena gas yang dihasilkan akan membentuk struktur seperti busa, sehingga aliran panas ke dalam adonan dapat berlangsung cepat pada saat baking. Panas yang masuk ke dalam adonan akan menyebabkan gas dan uap air terdesak ke luar dari adonan, sementara terjadi proses gelatinisasi pati sehingga terbentuk struktur frothy.

 

Fermentasi adonan didasarkan pada aktivitas-aktivitas metobolis dari khamir dan bakteri asam laktat. Aktivitas mikroorganisme ini pada kondisi anaerob akan menghasilkan metabolit fungsional yang penting pada pembentukkan adonan. Dengan mengendalikan parameter proses fermentasi dan metode preparasi adonan dapat dimungkinkan mempengaruhi aktivitas mikroorganisme dan enzim untuk menghasilkan adonan roti yang dikehendaki seperti volume, konsistensi, dan pembentukkan.

 

  • Peraanan khamir dalam pembuatan roti

 

Khamir jenis Saccharomyces cereviceae merupakan jenis khamir yang paling umum digunakan pada pembuatan roti. Khamir ini sangat mudah ditumbuhkan, membutuhkan nutrisi yang sederhana, laju pertumbuhan yang cepat, sangat stabil, dan aman digunakan (food-gradeorganism).  Dengan karakteristik tersebut, S. Cereviceae lebih banyak digunakan dalam pembuatan roti dibandingkan penggunaan jenis khamir yang lain. Dalam perdagangan khamir ini sering disebut dengan baker’s yeast atau ragi roti.

 

Pengembangan Adonan. Penggunaan mikroorganisme dalam pengembangan adonan masih menjadi fenomena yang asing bagi masyarakat yang tidak familiar dengan pabrik roti. Udara (oksigen) yang masuk ke dalam adonan pada saat pencampuran dan pengulenan (kneading) akan dimanfaatkan untuk tumbuh oleh khamir. Akibatnya akan terjadi kondisi yang anaerob dan terjadi proses fermentasi. Gas CO2 yang dihasilkan selama proses fermentasi akan terperangkap di dalam lapisan film gluten yang impermiabel. Gas akan mendesak lapisan yang elastis dan extensible yang selanjutnya menyebabkan pengembangan (penambahan volume) adonan.

 

Asidifikasi. Selama proses fermentasi selain dihasilkan gas CO2 juga dihasilkan asam-asam organik yang menyebabkan penurunan pH adonan. Karena tingginya kapasitas penyangga (buffer capacity) protein di dalam adonan, maka tingkat keasaman dapat ditentukan dengan menentukan total asam adonan. Proses asidifikasi ini dapat dijadikan sebagai indikator bahwa fermentasi adonan berjalan dengan baik. Dengan demikian pengukuran pH mutlak diperlukan dalam pengendalian proses.

 

Produksi Flavor. Terbentuknya alkohol, penurunan pH, dan terbentuknya metabolit lainnya secara langsung akan berperan sebagai prekursor flavor dan rasa roti. Akibat proses fermentasi tersebut dapat menghasilkan roti dengan mutu organoleptik yang tinggi.

 

  • Tahapan Pembuatan Roti 

Pada prinsipnya roti dibuat dengan cara mencampurkan tepung dan bahan penyusun lainnya menjadi adonan kemudian difermentasikan dan dipanggang. Pembuatan roti dapat dibagi menjadi dua bagian utama yaitu proses pembuatan adonan dan proses pembakaran. Kedua proses utama ini akan menentukan mutu hasil akhir.

1.      Proses pembuatan adonan 

Berbagai metode fermentasi adonan berkembang untuk memperoleh hasil sesuai dengan karakteristik berbagai jenis produk bakery. Walaupun berbagai metode dikembangkan, namun secara umum terjadi kecenderungan untuk menyederhanakan, memperpendek dan automatisasi proses fermentasi. Proses biologis yang kompleks selama fermentasi perlu dikendalikan untuk menghasilkan adonan sesuai dengan yang diinginkan. Untuk itu, pengendalian haruslah dilakukan selama periode fermentasi. Semua faktor seperti suhu, mutu dan jumlah sel, serta laju pertumbuhan harus terkendali, sehingga terbentuk gas di dalam adonan.

Proses pembuatan adonan roti dimulai dengan mencampur bahan kering, kecuali garam. Karena garam ‘dilarang’ bertemu dengan ragi sejak awal. Ragi akan mati bila dicampur bersamaan. Jadi mulailah mencampur tepung, gula, dan ragi, termasuk susu bubuk dan bread emulsifier, aduk rata. Kemudian tuangkan telur dan air secara bertahap sambil diuleni hingga adonan bergumpal-gumpal, atau setengah kalis. Baru kemudian masukkan mentega dan garam, uleni terus hingga adonan licin, kalis, elastis. Tanda paling mudah dikenali pada adonan kalis adalah, bila dibulatkan adonan tampak licin permukaannya. Bila masih ‘geradakan’ dan tidak licin, pasti adonan belum kalis sempurna. Jaminan utama bila adonan licin sempurna, roti pasti akan ‘jadi’ sempurna pula, karena tugas selanjutnya hanyalah memlakukan proses pembentukan roti, pengisian dan fermentasi.

Adonan yang frothy dapat dihasilkan dengan terbentuknya atau terdispersinya gelembung-gelembung gas di dalam adonan. Gas yang dibutuhkan untuk terbentuknya adonan dapat dihasilkan melalui proses biologis, kimia, maupun fisik. Gas yang dihasilkan terdispersi ke dalam adonan dalam bentuk gelembung untuk menghasilkan pori yang halus seperti gabus. Gas yang terbentuk merupakan gas CO2. Kehalusan pori yang terbentuk selama proses pengadonan tergantung pada karakteristik tepung yang digunakan seperti viskoelastisitas dari gluten dan daya ikat air (water-binding capacity) pentosan. Pori yang halus bisa juga terbentuk oleh karena udara massuk ke dalam adonan dan terdispersi dalam bentuk gelembung yang halus ketika tepung dan air dicampur dan diulen. Gelembung udara yang terperangkap berperan sebagai inti yang menyerap gas CO2 yang terbentuk akan membuat adonan mengembang membentuk struktur spon. Pengembangan adonan dapat melebihi 1:6 karena gas CO2 terbentuk selama fermentasi. Pembentukan gas selama fermentasi diikuti oleh reaksi-reaksi fermentatif lainnya seperti terbentuknya metabolit-metabolit intermediet yang berpengaruh pada konsistensi adonan dan terbentuknya senyawa-senyawa volatil yang merupakan prekursor aroma.

Gas yang terdispersi dan terperangkap di dalam adonan dalam bentuk gelembung dibutuhkan untuk pembentukan pori. Terbentuknya dinding pori yang elastis (extensible) tergantung pada kandungan protein yang spesifik yang dapat membentuk film yang elastis. Karakteristik semacam ini diperlihatkan oleh gluten (gliadin dan glutenin) yang merupakan jenis protein yang terkandung di dalam tepung gandum. Ketika tepung gandum dicampur dengan air, gluten akan membentuk massa viskoelastis yang mengikat semua bahan adonan terutama pati menjadi suatu jaringan. Lapisan film yang terbentuk bersifat impermiabel terhadap gas, sehingga dapat memerangkap gas dan membentuk pori. Selanjutnya pada saat proses pemanggangan (baking) terjadi gelatinisasi pati dan koagulasi gluten yang dapat membentuk crumb dan tekstur yang lembut.

Lama penyiapan dan fermentasi adonan sangat bervariasi yang harus dapat dikendalikan dengan baik. Penggunaan proporsi khamir yang tinggi akan menyebabkan pembentukkan gas yang cepat. Hal ini dapat menyulitkan dalam pengaturan waktu fermentasi dan penyiapan adonan. Untuk itu, penjadwalan yang ketat dibutuhkan saat penyiapan adonan karena pengembangan volume adonan terjadi dengan cepat. Pengakhiran proses fermentasi sangat mempengaruhi volume dan bentuk akhir produk bakery.

Pembuatan adonan meliputi proses pengadukan bahan dan pengembangan adonan (dough development) sampai proses fermentasinya. Proses pengadukan bahan baku roti erat kaitannya dengan pebentukan zat gluten, sehingga adonan siap menerima gas CO2 dari aktivitas fermentasi. Prinsipnya proses pengaduan ini adalah pemukulan dan penarikan jaringan zat gluten sehingga struktur spiralnya akan berubah manjadi sejajar satu dengan lainnya. Jika struktur ini tercapai maka permukaan adonan akan terlihat mengkilap dan tidak lengkat serta adonan akan mengembang pada titik optimum dimana zat gluten dapat ditarik atau dikerutkan.

Sistem pembentukan adonan dalam pembuatan roti yaitu : Boiled Dough,  sponge and dough, straight dough and no time dough. Boiled Dough, ada 3 tahap dalam pembuatan boiled dough, pertama membuat pre-dough, yaitu campuran antara air panas dan tepung terigu, lalu didinginkan. Kedua, membuat adonan biang (sponge) yang merupakan campuran dari tepung terigu, ragi, air, dan gula pasir yang diuleni, diistirahatkan selama sekitar 90 menit. Dan, yang terakhir pembuatan adonan utama atau dough-nya yang terdiri dari gula pasir halus, garam, mentega, bread improver, telur, serpihan es, terigu protein protein tinggi, susu bubuk full cream, madu, dan air es.  Cara pembuatan: Masukkan pre-dough ke dalam sponge dough, kemudian ditambahkan bahan-bahan utama dan diuleni hingga adonan menjadi kalis, lalu diistirahatkan sekitar 5 menit, selanjutnya proofing (pembentukan adonan), istirahatkan kembali untuk penyempurnaan pengembangan adonan (30-45 menit). Dan terakhir, siap dipanggang. Karakteristik: Roti lebih lembut, ringan, dan tahan lama Sistem sponge and dough terdiri dari 2 langkah pengadukan yaitu pembuatan sponge dan pembuatan dough. Cara pembuatan: Pertama pembuatan adonan biang (komposisi seperti pada boiled dough), kemudian istirahatkan (resting) sekitar 2 jam atau semalaman (untuk over night sponge dough), kemudian biang dicampurkan ke dalam adonan utama (dough) dan uleni hingga kalis, selanjutnya timbang, proofing dan panggang. Karakteristik: Hasil akhir volume roti besar, lembut dan tahan lama.  Sedangkan sistem straight dough (cara langsung) adalah proses dimana bahan-bahan diaduk bersama-sama dalam satu langkah. Straight Dough, cara pembuatan: Semua bahan utama diuleni, resting selama sekitar 15 menit, tekan adonan untuk membuang gas, kemudian timbang, resting kembali sekitar 10 menit, kemudian proofing, dan panggang.  Sistem no time dough adalah proses langsung juga dengan waktu fermentasi yang sesingkat mungkin atau ditiadakan sama sekali. Proses pengembangan adonan merupakan suatu proses yang terjadi secara sinkron antara peningkatan volume sebagai akibat bertambahnya gas-gas yang terbentuk sebagai hasil fermentasi dan protein larut, lemak dan karbohidrat yang juga mengembang dan membentuk film tipis. Dalam proses ini terlihat dua kelompok daya yaitu daya poduksi gas dan daya penahan gas. Beberapa faktor yang dapat mempengaruhi daya produksi gas adalah konsentrasi ragi roti, gula, malt, makanan ragi dan susu selama berlangsungnya fermentasi.

Yeast (ragi) memfermentasikan adonan sehingga menghasilkan gas karbondioksida yang akan mengembangkan adonan. Jika proses fermentasi terkendali dengan baik, maka akan menghasilkan produk bakery seperti roti dan donat yang baik, dalam arti mempunyai volume dan tekstur yang baik serta cita rasa yang enak. Selama proses fermentasi akan terbentuk CO2 dan ethyl alkohol. Gula-gula sederhana seperti glukosa dan fruktosa digunakan sebagai substrat penghasil CO2. Gas CO2 yang terbentuk menyebabkan adonan roti mengembang dan alkohol berkontribusi dalam membentuk aroma roti.

Proses fermentasi oleh ragi juga berhubungan dengan aktivitas enzim yang terdapat pada ragi. Enzim yang terdapat pada ragi adalah invertase, maltase dan zymase. Gula pasir atau sukrosa tidak difermentasi secara langsung oleh ragi.

  • Invertase mengubah sukrosa menjadi invert sugar (glukosa dan fruktosa) yang difermentasi secara langsung oleh ragi. Sukrosa dalam adonan akan diubah menjadi glukosa pada tahap akhir mixing. Reaksi yang terjadi adalah:

Sukrosa + air gula invert         →    C12H22O11 + H2O invertase 2 C6H12O6

  • Maltase mengubah malt sugar atau maltosa yang ada pada malt syrup menjadi dekstrosa. Dekstrosa difermentasi secara langsung oleh ragi.
  • Zymase mengubah invert sugar dan dekstrosa menjadi gas karbondioksida yang akan menyebabkan adonan menjadi mengembang dan terbentuk alkohol. Enzim zimase merupakan biokatalis yang digunakan dalam proses pembuatan roti. Kompleks enzim zimase ini dapat mengubah glukosa dan fruktosa menjadi CO2 dan alkohol. Penambahan enzim zimase dilakukan pada proses peragian pengembangan adonan roti (dough fermentation/rounding). Ragi/baker’s yeast di tambahkan ke dalam adonan roti sehingga glukosa dalam adonan roti akan terurai menjadi etil alkohol dan karbon dioksida. Proses penguraian ini berlangsung dengan bantuan enzim zimase yang dihasilkan oleh ragi/baker’s yeast. Berikut ini reaksi penguraian yang terjadi akibat adanya penambahan enzim zimase dalam adonan roti :

etil alkohol + karbondioksida      → C6H12O6 zimase 2 C2H5OH + 2 CO2

Pada proses ini, gas karbon dioksida berfungsi sebagai gas yang mengembangkan adonan roti.

Fungsi ragi (yeast) dalam pembuatan roti adalah untuk proses aerasi adonan dengan mengubah gula menjadi gas karbondioksida, sehingga mematangkan dan mengempukan gluten dalam adonan. Pengkondisian dari gluten ini akan memungkinkan untuk mengembangkan gas secara merata dan menahannya, membentuk cita rasa akibat terjadinya proses fermentasi.

Proses yang paling penting dan mendasar dalam pembuatan roti adalah proses biologis yang disebut dengan proses fermentai yang dilakukan oleh ragi roti. Khamir sendiri tidak dapat mengawali pembentukan gas dalam adonan, namun dalam tahapan selanjutnya khamir merupakan satu komponen utama yang berfungsi mengembangkan, mematangkan, memproduksi senyawa-senyawa gas dan aroma adonan melalui fermentasi yang dilakukan. Suhu optimum fermentasi adoan adalah 27o C.

Proses proffing adalah proses fermentasi akhir seteleh adonan dibentuk, ditimbang dan dimasukkan ke dalam loyang, sebelum akhirnya adonan dipanggang dalam oven. Pada tahap ini gluten menjadi halus dan meluas serta penampakan proffing volume adonan menjadi dua kali lipat. Suhu proffing yang baik adalah antara 32-38o C dengan kelembaban relatif (RH) 80-85 % selama 15 – 45 menit.

2. Proses pembakaran 

Proses pembakaran adonan merupakan tahap akhir yang menentukan berhasil tidaknya suatu proses pembuatan roti. Untuk memperoleh hasil yang baik dan berwarna coklat dibutuhkan pemanasan sekitar 150-200oC. Sedangkan lama pembakaran roti secara tepat tergantung pada ukuran atau bentuk roti, jumlah gula yang digunakan dalam formula dan jenis roti yang dibakar.

Pada saat awal proses pemanggangan adonan roti (baking) terjadi penurunan tingkat viskositas suatu adonan roti disamping itu juga akan terjadi peningkatan aktivitas enzim yang berperanan aktif dalam pengembangan adoanan roti. Ketika suhu pemanggangan mencapai suhu 56⁰C maka akan terjadi proses gelatinisasi pati dan memudahkan terjadinya reaksi hidrolisis amilosa dalam molekul pati atau amilolisis. Hidrolisis molekul pati yang mulai tergelatinisasi akan membentuk senyawa dextrin dan senyawa gula sederhana lainnya, dan pada saat yang bersamaan akan terjadi proses pelepasan air (dehidrasi). Hal ini akan berkontribusi secara lanjut terhadap kelengketan adonan roti (crumb stickiness) yang dihasilkan dan meningkatnya intensitas warna kulit roti (crust color). Pada saat pemangangan terjadi perubagan warna kulit roti menjadi coklat yang merupakan hasil reaksi Maillard. Peningkatan konsentrasi senyawa gula sederhana akan mempengaruhi intensitas warna kulit roti. retrogradasi. Pengerasan dapat pula terjadi karena adanya ikatan silang pati-protein.

  •  Bagan Proses Pembuatan Roti

Bahan utama                                              Bahan Tambahan

Tepung                                              Gula

Air                                                       Shortening

Ragi                                                    Malt/susu

I _______________________I

Pencampuran dan pengadukan adonan

Peragian/ fermentasi

Penyeragaman bentuk ( pembentukan dan penimbangan)

Profing(pengembanagan adonana)

Pembakaran/baking

Kajian Reliji

Di dalam Al-Quran secara tersirat Allah SWT telah menyiratkan akan pentingnya pengaruh lingkungan bagi kehidupan makhluk hidup yang ia ciptakan

termasuk mikroorganisme yang juga merupakan salah satu contoh makhluk hidup ciptaan Allah SWT, hal ini tersirat dalam beberapa ayat di dalam Al-Quran diantaranya dalam :

Q.S. Al-Furqon: 61

Artinya: “Maha Suci Allah yang menjadikan di langit gugusan-gugusan bintang dan Dia menjadikan juga padanya matahari dan bulan yang bercahaya”

Q. S. Al-Baqoroh: 164

Artinya: “Sesungguhnya dalam penciptaan langit dan bumi, silih bergantinya malam dan siang, bahtera yang berlayar di laut membawa apa yang berguna bagi manusia, dan apa yang Allah turunkan dari langit berupa air, lalu dengan air itu Dia hidupkan bumi sesudah mati (kering)-nya dan Dia sebarkan di bumi itu segala jenis hewan, dan pengisaran angin dan awan yang dikendalikan antara langit dan bumi; sungguh (terdapat) tanda-tanda (keesaan dan kebesaran Allah) bagi kaum yang memikirkan”.

Allah telah memberikan kemudahan bagi kita untuk memanfaatkan atau mengelola binatang-binatang ternak untuk dimanfaatkan sesuai kebutuhan manusia. Dapat untuk dimakan dan untuk menghasilkan suatu  produk olahan.Pada  bimatang-binatang ternak tersebut terdapat  manfaat yang banyak bagi kita, jika kita mau memikirkannya.

Kesimpulan :

  • Saccharomyces adalah genus dalam kerajaan jamur yang mencakup banyak jenis ragi. Saccharomyces berasal dari bahasa Latin yang berarti gula jamur. Banyak anggota dari genus ini dianggap sangat penting dalam produksi makanan.
  • Fermentasi merupakan kegiatan mikrobia pada bahan pangan sehingga dihasilkan produk yang dikehendaki. Mikrobia yang umumnya terlibat dalam fermentasi adalah bakteri, khamir dan kapang.
  • Khamir jenis Saccharomyces cereviceae merupakan jenis khamir yang paling umum digunakan pada pembuatan roti
  • Pembuatan roti dapat diagi menjadi dua bagian utama yaitu proses pembuatan adonan dan proses pembakaran.

Sumber :

http://ptp2007.wordpress.com/2007/10/08/fermentasi/

http://swiss8910.blogspot.com/2011/03/saccharomyces-cerevisiae-dalam-industri.html

http://zhulmaycry.blogspot.com/2009/08/jamur-ragi-saccharomyces-cerevisiae.html

http://www.scribd.com/doc/50834352/Fermentasi-pada-roti

http://abipbu6.blogspot.com/2011/04/ragi.html

http://nurhidayat.lecture.ub.ac.id/2009/09/fermentasi-roti/

http://yuphyyehahaa.blogspot.com/2011/06/peranan-enzim-dalam-pengolahan-roti.html

 

 

PEMAMFAATAN BAKTERI Rhizopus Oryzae DALAM INDUSTRI TEMPE

Rhizopus orizae

Klasifikasi :

Kingdom         : Fungi

Divisio             : Zygomycota

Class                : Zygomycetes

Ordo                : Mucorales

Familia            : Mucoraceae

Genus              : Rhizopus

Species            : Rhizopus oryzae

Rhizopus sp. yaitu koloni berwarna putih berangsur-angsur menjadi abu-abu; stolon halus atau sedikit kasar dan tidak berwarna hingga kuning kecoklatan; sporangiofora tumbuh dari stolon dan mengarah ke udara, baik tunggal atau dalam kelompok (hingga 5 sporangiofora); rhizoid tumbuh berlawanan dan terletak pada posisi yang sama dengan sporangiofora; sporangia globus atau sub globus dengan dinding berspinulosa (duri-duri pendek), yang berwarna coklat gelap sampai hitam bila telah masak; kolumela oval hingga bulat, dengan dinding halus atau sedikit kasar; spora bulat, oval atau berbentuk elips atau silinder; suhu optimal untuk pertumbuhan 350C, minimal 5-70C dan maksimal 440C. Berdasarkan asam laktat yang dihasilkan Rhizopus oryzae termasuk mikroba heterofermentatif (Kuswanto dan Slamet, 1989).

Rhizopus oryzae pada industri tempe

Tempe adalah makanan yang populer di negara kita. Meskipun merupakan makanan yang sederhana, tetapi tempe mempunyai atau mengandung sumber protein nabati yang cukup tinggi. Tempe adalah makanan yang dibuat dari fermentasi terhadap biji kedelai atau beberapa bahan lain yang menggunakan beberapa jenis kapang Rhizopus, seperti Rhizopus oligosporus, Rh. oryzae, Rh. stolonifer (kapang roti), atau Rh. arrhizus, sehingga membentuk padatan kompak berwarna putih. Sediaan fermentasi ini secara umum dikenal sebagai ragi tempe. Warna putih pada tempe disebabkan adanya miselia jamur yang tumbuh pada permukaan biji kedelai. Tekstur kompak juga disebabkan oleh mise1ia jamur yang menghubungkan biji-biji kedelai tersebut. Banyak sekali jamur yang aktif selama fermentasi, tetapi umumnya para peneliti menganggap bahwa Rhizopus sp merupakan jamur yang paling dominan. Jamur yang tumbuh pada kedelai tersebut menghasilkan enzim-enzim yang mampu merombak senyawa organik kompleks menjadi senyawa yang lebih sederhana sehingga senyawa tersebut dengan cepat dapat dipergunakan oleh tubuh.

Tempe banyak dikonsumsi di Indonesia, tetapi sekarang telah mendunia. Kaum vegetarian di seluruh dunia banyak yang telah menggunakan tempe sebagai pengganti daging. Akibatnya sekarang tempe diproduksi di banyak tempat di dunia, tidak hanya di Indonesia. Berbagai penelitian di sejumlah negara, seperti Jerman, Jepang, dan Amerika Serikat. Indonesia juga sekarang berusaha mengembangkan galur (strain) unggul Rhizopus untuk menghasilkan tempe yang lebih cepat, berkualitas, atau memperbaiki kandungan gizi tempe. Beberapa pihak mengkhawatirkan kegiatan ini dapat mengancam keberadaan tempe sebagai bahan pangan milik umum karena galur-galur ragi tempe unggul dapat didaftarkan hak patennya sehingga penggunaannya dilindungi undang-undang (memerlukan lisensi dari pemegang hak paten).

Jamur Rhizopus oryzae merupakan jamur yang sering digunakan dalam pembuatan tempe (Soetrisno, 1996). Jamur Rhizopus oryzae aman dikonsumsi karena tidak menghasilkan toksin dan mampu menghasilkan asam laktat (Purwoko dan Pamudyanti, 2004). Jamur Rhizopus oryzae mempunyai kemampuan mengurai lemak kompleks menjadi trigliserida dan asam amino (Septiani, 2004). Selain itu jamur Rhizopus oryzae mampu menghasilkan protease (Margiono, 1992). Menurut Sorenson dan Hesseltine (1986), Rhizopus sp tumbuh baik pada kisaran pH 3,4-6. Pada penelitian semakin lama waktu fermentasi, pH tempe semakin meningkat sampai pH 8,4, sehinggajamur semakin menurun karena pH tinggi kurang sesuai untuk pertumbuhan jamur. Secara umum jamur juga membutuhkan air untuk pertumbuhannya, tetapi kebutuhan air jamur lebih sedikit dibandingkan dengan bakteri. Selain pH dan kadar air yang kurang sesuai untuk pertumbuhan jamur, jumlah nutrien dalam bahan, juga dibutuhkan oleh jamur.

                                                                       ( Anonymous,2010 )

Pembuatan Tempe

Pada dasarnya proses pembuatan tempe merupakan proses penanaman mikroba jenis jamur Rhizopus sp pada media kedelai, sehingga terjadi proses fermentasi kedelai oleh ragi tersebut. Hasil fermentasi menyebabkan tekstur kedelai menjadi lebih lunak, terurainya protein yang terkandung dalam kedelai menjadi lebih sederhana, sehingga mempunyai daya cerna lebih baik dibandingkan produk pangan dari kedelai yang tidak melalui proses fermentasi.

Tempe terbuat dari kedelai dengan bantuan jamur Rhizopus sp. Jamur ini akan mengubah protein kompleks kacang kedelai yang sukar dicerna menjadi protein sederhana yang mudah dicerna karena adanya perubahan-perubahankimia pada protein, lemak, dan karbohidrat. Selama proses fermentasi kedelai menjadi tempe, akan dihasilkan antibiotika yang akan mencegah penyakit perut seperti diare. Pembuatan tempe dilakukan dengan berbagai cara diantaranya adalah:

1. Cara Sederhana

Cara sederhana adalah cara pembuatan tempe yang biasa dilakukan oleh para pengrajin tempe di Indonesia.

  • Pada tahap awal pembuatan tempe, biji kedelai direbus. Tahap perebusan ini berfungsi sebagai proses hidrasi, yaitu agar biji kedelai menyerap air sebanyak mungkin. Perebusan juga dimaksudkan untuk melunakkan biji kedelai supaya nantinya dapat menyerap asam pada tahap perendaman.
                                                                Gambar 1 : proses perebusan
  • Kulit biji kedelai dikupas pada tahap pengupasan agar miselium fungi dapat menembus biji kedelai selama proses fermentasi. Pengupasan dapat dilakukan dengan tangan, diinjak-injak dengan kaki, atau dengan alat pengupas kulit biji.
  • Setelah dikupas, biji kedelai direndam. Tujuan tahap perendaman ialah untuk hidrasi biji kedelai dan membiarkan terjadinya fermentasi asam laktat secara alami agar diperoleh keasaman yang dibutuhkan untuk pertumbuhan fungi. Fermentasi asam laktat terjadi dicirikan oleh munculnya bau asam dan buih pada air rendaman akibat pertumbuhan bakteri Lactobacillus. Bila pertumbuhan bakteri asam laktat tidak optimum (misalnya di negara-negara subtropis[4], asam perlu ditambahkan pada air rendaman. Fermentasi asam laktat dan pengasaman ini ternyata juga bermanfaat meningkatkan nilai gizi dan menghilangkan bakteri-bakteri beracun.

Gambar 2 : proses perendaman

  • Proses pencucian akhir dilakukan untuk menghilangkan kotoran yang mungkin dibentuk oleh bakteri asam laktat dan agar biji kedelai tidak terlalu asam. Bakteri dan kotorannya dapat menghambat pertumbuhan fungi.
                                                             Gambar.3 : Proses pencucian akhir
  • Inokulasi dilakukan dengan penambahan inokulum, yaitu ragi tempe atau laru. Inokulum dapat berupa kapang yang tumbuh dan dikeringkan pada daun waru atau daun jati (disebut usar; digunakan secara tradisional), spora kapang tempe dalam medium tepung (terigu, beras, atau tapioka; banyak dijual di pasaran), ataupun kultur R. oligosporus murni (umum digunakan oleh pembuat tempe di luar Indonesia). Inokulasi dapat dilakukan dengan dua cara, yaitu (1) penebaran inokulum pada permukaan kacang kedelai yang sudah dingin dan dikeringkan, lalu dicampur merata sebelum pembungkusan; atau (2) inokulum dapat dicampurkan langsung pada saat perendaman, dibiarkan beberapa lama, lalu dikeringkan.

Gambar 4 : Proses perataan dan pemisahan air rendaman pada kedelai

  • Setelah diinokulasi, biji-biji kedelai dibungkus atau ditempatkan dalam wadah untuk fermentasi. Berbagai bahan pembungkus atau wadah dapat digunakan (misalnya daun pisang, daun waru, daun jati, plastik, gelas, kayu, dan baja), asalkan memungkinkan masuknya udara karena kapang tempe membutuhkan oksigen untuk tumbuh. Bahan pembungkus dari daun atau plastik biasanya diberi lubang-lubang dengan cara ditusuk-tusuk.

                                                          Gambar 5 : Pembungkusan tempe

  • Biji-biji kedelai yang sudah dibungkus dibiarkan untuk mengalami proses fermentasi. Pada proses ini kapang tumbuh pada permukaan dan menembus biji-biji kedelai, menyatukannya menjadi tempe. Fermentasi dapat dilakukan pada suhu 20 °C–37 °C selama 18–36 jam. Waktu fermentasi yang lebih singkat biasanya untuk tempe yang menggunakan banyak inokulum dan suhu yang lebih tinggi, sementara proses tradisional menggunakan laru dari daun biasanya membutuhkan waktu fermentasi sampai 36 jam.

 2. Cara Baru

Pada prinsipnya cara pembuatan tempe dengan cara baru sama dengan cara yang lama atau tradisional dan perbedaannya adalah terletak pada tahap pengupasan kulit kedelai. Dimana pada cara lama (tradisional) kedelai direbus dan direndam bersama kulitnya atau masih utuh sedangkan pada cara yang baru sebelumnya kedelai telah dikupas kulitnya (kupas kering) dengan menggunakan alat pengupasan kedelai. Tahap-tahap selanjutnya sama dengan cara tradisional.

Tempe yang dibuat dengan cara baru warnanya (warna kedelai) lebih pucat bila dibandingkan dengan cara lama.ahal ini disebabkan –karena pada cara baru kedelai direbus dan direndam dalam keadaan sudah terkupas kulitnya sehingga ada zat-zat yang larut (Warisno, 2010).

Proses biokimia di tempe

Selama proses pembuatan tempe terjadi perubahan materi, yaitu perubahan fisika dan kimia yaitu: Perubahan fisika ditandai dengan perubahan wujud atau fase zat yang umumnya bersifat sementara dan struktur molekulnya tetap. Sedangkan perubahan kimia adalah perubahan materi yang menghasilkan zat yang jenisnya baru. Perubahan kimia disebut juga reaksi kimia.

Adanya perubahan suhu, yaitu selama proses inkubasi tempe . Perubahan kimia yang terjadi pada proses pembuatan tempe adalah pada saat inkubasi. Pada saat itu terjadilah reaksi fermentasi. Proses fermentasi yang dilakukan oleh jamur Rhizopus sp menghasilkan energi. Energi tersebut sebagian ada yang dilepaskan oleh jamur Rhizopus sp sebagai energi panas. Energi panas itulah yang menyebabkan perubahan suhu selama proses inkubasi tempe. Selain terjadi perubahan suhu, selama proses inkubasi tempe juga terjadi perubahan warna, dan munculnya titik- titik air yang dapat diamati pada permukaan dalam plastik pembungkus tempe. Pada awal pengamatan, kedelai pada tempe seperti berselimut kapas yang putih. Tetapi dengan bertambahnya masa inkubasi, mulai muncul warna hitam pada permukaan.

Perubahan warna ini menunjukkan adanya reaksi kimia pada proses inkubasi. Jamur Rhizopus sp tergolong makhluk hidup. Oleh karena itu ia juga melakukan respirasi. Respirasi merupakan reaksi kimia atau perubahan kimia. Salah satu zat yang dilepaskan dari peristiwa respirasi adalah gas karbondioksida dan uap air. Uap air itulah yang menyebabkan permukaan dalam plastik pembungkus tempe basah oleh titik-titik air. Sebuah reaksi kimia tidak selalu menunjukkan seluruh ciri reaksi tersebut. Kadang, reaksi tersebut hanya menunjukkan salah satu atau beberapa ciri saja (Sutikno, 2009).

Fermentasi merupakan tahap terpenting dalam proses pembuatan tempe. Menurut hasil penelitian pada tahap fermentasi terjadi penguraian karbohidrat, lemak, protein dan senyawa-senyawa lain dalam kedelai menjadi molekul-molekul yang lebih kecil sehingga mudah dimafaatkan tubuh. Pada proses fermentasi kedelai menjadi tempe terjadi aktivitas enzim amilolitik, lipolitik dan proteolitik, yang diproduksi oleh kapang Rhizopus sp. Pada proses pembuatan tempe, sedikitnya terdapat empat genus rhizopus yang dapat digunakan. Rhizopus oligosporus merupakan genus utama, kemudian Rhizopus oryzae merupakan genus lainnya yang digunakan pada pembuatan tempe Indonesia.

Produsen tempe di Indonesia tidak menggunakan inokulum berupa biakan murni kapang Rhizopus sp., namun menggunakan inokulum dalam bentuk bubuk yang disebut laru atau inokulum biakan kapang pada daun waru yang disebut usar. Pada penelitian ini dipelajari aktivitas enzim-enzim a-amilase, lipase dan protease pada proses fermentasi kedelai menjadi tempe menggunakan biakan murni rhizopus oligosporus, rhizopus oryzae dan laru.

Fermentasi adalah proses produksi energi dalam sel dalam keadaan anaerobik (tanpa oksigen). Secara umum, fermentasi adalah salah satu bentuk respirasi anaerobik, akan tetapi, terdapat definisi yang lebih jelas yang mendefinisikan fermentasi sebagai respirasi dalam lingkungan anaerobik dengan tanpa akseptor elektron eksternal.

 Beberapa faktor yang perlu diperhatikan dalam pembuatan tempe adalah sebagai berikut:

1. Oksigen

Oksigen dibutuhkan untuk pertumbuhan kapang. Aliran udara yang terlalu cepat menyebabkan proses metabolisme akan berjalan cepat sehingga dihasilkan panas yang dapat merusak pertumbuhan kapang. Oleh karena itu apabila digunakan kantong plastik sebagai bahan pembungkusnya maka sebaiknya pada kantong tersebut diberi lubang dengan jarak antara lubang yang satu dengan lubang lainnya sekitar 2 cm.

2. Uap air

Uap air yang berlebihan akan menghambat pertumbuhan kapang. Hal ini disebabkan karena setiap jenis kapang mempunyai Aw optimum untuk pertumbuhannya.

3. Suhu

Kapang tempe dapat digolongkan kedalam mikroba yang bersifat mesofilik, yaitu dapat tumbuh baik pada suhu ruang (25-27oC). Oleh karena itu, maka pada waktu pemeraman, suhu ruangan tempat pemeraman perlu diperhatikan.

4. Keaktifan Laru

Laru yang disimpan pada suatu periode tertentu akan berkurang keaktifannya. Karena itu pada pembuatan tape sebaiknya digunakan laru yang belum terlalu lama disimpan agar dalam pembuatan tempe tidak mengalami kegagalan.

Untuk membeuat tempe dibutuhkan inokulum atau laru tempe atau ragi tempe. Laru tempe dapat dijumpai dalam berbagai bentuk misalnya bentuk tepung atau yang menempel pada daun waru dan dikenal dengan nama Usar. Laru dalam bentuk tepung dibuat dengan cara menumbuhkan spora kapang pada bahan, dikeringkan dan kemudian ditumbuk. Bahan yang akan digunakan untuk sporulasi dapat bermacam-macam seperti tepung terigu, beras, jagung, atau umbi-umbian.

Berdasarkan atas tingkat kemurniannya, inokulum atau laru tempe dapat dibedakan atas: inokulum murni tunggal, inokulum campuran, dan inokulum murni campuran. Adapun perbedaannya adalah pada jenis dan banyaknya mikroba yang terdapat dan berperan dalam laru tersebut.

Mikroba yang sering dijumpai pada laru tempe adalah kapang jenis Rhizopus oligosporus, atau kapang dari jenis R. oryzae. Sedangkan pada laru murni campuran selain kapang Rhizopus oligosporus, dapat dijumpai pula kultur murni Klebsiella.

Selain bakteri Klebsiella, ada beberapa jenis bakteri yang berperan pula dalam proses fermentasi tempe diantaranya adalah: Bacillus sp., Lactobacillus sp., Pediococcus sp., Streptococcus sp., dan beberapa genus bakteri yang memproduksi vitamin B12. Adanya bakteri Bacillus sp pada tempe merupakan kontaminan, sehingga hal ini tidak diinginkan.

Pada tempe yang berbeda asalnya sering dijumpai adanya kapang yang berbeda pula (Dwidjoseputro dan Wolf, 1970). Jenis kapang yang terdapat pada tempe Malang adalah R. oryzae., R. oligosporus., R. arrhizus dan Mucor rouxii. Kapang tempe dari daerah Surakarta adalah R. oryzaei dan R. stolonifer sedangkan pada tempe Jakarta dapat dijumpai adanya kapang Mucor javanicus., Trichosporon pullulans., A. niger dan Fusarium sp.

                                                                     (Anonymous,2010)

Masing-masing varietas dari kapang Rhizopus berbeda reaksi biokimianya, hal ini terutama disebabkan adanya perbedaan dari enzim yang dihasilkan. Pektinase hanya disintesa oleh R. arrhizus dan R. stolonifer. Sedangkan enzim amilase disintesa oleh R. oligosporus dan R. oryzae tetapi tidak disintesa oleh R. arrhizus.

Selama proses fermentasi, kedelai akan mengalami perubahan baik fisik maupun kimianya. Protein kedelai dengan adanya aktivitas proteolitik kapang akan diuraikan menjadi asan-asam amino, sehingga nitrogen terlarutnya akan mengalami peningkatan. Dengan adanya peningkatan dari nitrogen terlarut maka pH juga akan mengalami peningkatan. Nilai pH untuk tempe yang baik berkisar antara 6,3 sampai 6,5. Kedelai yang telah difermentasi menjadi tempe akan lebih mudah dicerna. Selama proses fermentasi karbohidrat dan protein akan dipecah oleh kapang menjadi bagian-bagian yang lebih mudah larut, mudah dicerna dan ternyata bau langu dari kedelai juga akan hilang.

Kadar air kedelai pada saat sebelum fermentasi mempengaruhi pertumbuhan kapang. Selama proses fermentasi akan terjadi perubahan pada kadar air dimana setelah 24 jam fermentasi, kadar air kedelai akan mengalami penurunan menjadi sekitar 61% dan setelah 40 jam fermentasi akan meningkat lagi menjadi 64% (Sudarmaji dan Markakis, 1977).

Perubahan-perubahan lain yang terjadi selama fermentasi tempe adalah berkurangnya kandungan oligosakarida penyebab flatulence. Penurunan tersebut akan terus berlangsung sampai fermentasi 72 jam.

Selama fermentasi, asam amino bebas juga akan mengalami peningkatan dan peningkatannya akan mencapai jumlah terbesar pada waktu fermentasi 72 jam (Murata et al., 1967). Kandungan serat kasar dan vitamin akan meningkat pula selama fermentasi kecuali vitamin B1 atau yang lebih dikenal dengan thiamin (Shurtleff dan Aoyagi).

Adapun kadar senyawa kimia yang terkandung dalam tempe adalah sebagai berikut :

1. Asam Lemak

Kandungan lemak pada tempe secara umum sebanyak 18-32%. Selama proses fermentasi tempe, terdapat tendensi adanya peningkatan derajat ketidakjenuhan terhadap lemak. Dengan demikian, asam lemak tidak jenuh majemuk (polyunsaturated fatty acids, PUFA) meningkat jumlahnya. Asam lemak tidak jenuh mempunyai efek penurunan terhadap kandungan kolesterol serum, sehingga dapat menetralkan efek negatif sterol di dalam tubuh.

2. Vitamin

Dua kelompok vitamin terdapat pada tempe, yaitu larut air (vitamin B kompleks) dan larut lemak (vitamin A, D, E, dan K). Tempe merupakan sumber vitamin B yang sangat potensial. Jenis vitamin yang terkandung dalam tempe antara lain vitamin B1 (tiamin), B2 (riboflavin), asam pantotenat, asam nikotinat (niasin), vitamin B6 (piridoksin), dan B12 (sianokobalamin).

3. Mineral

Tempe mengandung mineral makro dan mikro dalam jumlah yang cukup. Jumlah mineral besi, tembaga, dan zink berturut-turut adalah 9,39; 2,87; dan 8,05 mg setiap 100 g tempe.Kapang tempe dapat menghasilkan enzim fitase yang akan menguraikan asam fitat (yang mengikat beberapa mineral) menjadi fosfor dan inositol. Dengan terurainya asam fitat, mineral-mineral tertentu (seperti besi, kalsium, magnesium, dan zink) menjadi lebih tersedia untuk dimanfaatkan tubuh.

4. Anti Oksidan

Di dalam tempe juga ditemukan suatu zat antioksidan dalam bentuk isoflavon. Seperti halnya vitamin C, E, dan karotenoid, isoflavon juga merupakan antioksidan yang sangat dibutuhkan tubuh untuk menghentikan reaksi pembentukan radikal bebas. Dalam kedelai terdapat tiga jenis isoflavon, yaitu daidzein, glisitein, dan genistein. Pada tempe, di samping ketiga jenis isoflavon tersebut juga terdapat antioksidan faktor II (6,7,4-trihidroksi isoflavon) yang mempunyai sifat antioksidan paling kuat dibandingkan dengan isoflavon dalam kedelai. Antioksidan ini disintesis pada saat terjadinya proses fermentasi kedelai menjadi tempe oleh bakteri Micrococcus luteus dan Coreyne bacterium.

5. Protein

Kandungan protein pada tempe sebanyak 35-45%

6. Karbohidrat

Kandungan karbohidrat pada tempe sebesar 12-30%

7. Air

Kandungan air pada tempe sebesar 7 %.

 Produksi tempe secara tradisional dan modern

Pembuatan tempe secara tradisional biasanya menggunakan tepung tempe yang dikeringkan di bawah sinar matahari. Sekarang pembuatan tempe ada juga yang menggunakan ragi tempe, Inokulum rhizopus sp. yang berwarna putih kapas. Cara pembuatan tempe secara tradisional, yaitu dengan cara menginjak-injak biji kedelai untuk mengupas bijinya. Cara ini menimbulkan kesan yang tidak higienis. Akibatnya, ada orang yang tidak menyukai tempe karena hal tersebut.

Untuk mengatasi masalah tersebut, dewasa ini telah ditemukan cara baru pembuatan temep dengan menggunakan mesin pengupas. Pembuatan tempe dengan mesin pengupas kulit kedelai dapat meningkatkan hasil produksi beberapa kali lipat. Selain produk temep terjamin kebersihannya, pembuatan temep dengan mesin dapat meningkatkan pendapatan para pengusaha tempe. Dengan mesin, orang dapat menggarap kedelai untuk tempe tidak kurang darin 800kg perhari. Jika dikerjakan secara tradisional orang hanya mampu mengerjakan 10kg kedelai saja tiap hari.

Fungsi utama mesin pengupas kedelai adalah membersihkan  keeping biji kedelai dari kulitnya. Sayangnyab mesin ini tidak hanya mengupas kulit luar saja, tetapi kulit arinya juga terkelupas. Bagi pengusaha tempe tradisional hal itu agak mengecewakan. Menurut mereka kulit ari kedelai mengandung semacam zat yang memungkinkan kapang tempe tumbuh lebih baik. Zat yang terkandung dalam kulit ar I itu akan menghasilkan lendir yang bakal diserap kepingan-kepingan biji kedelai ketika di rebus.

Kelemahan mesin pengupas adalah belum dapat memisahkan kepingan biji dari tunas lembaga kedelai. Adanya tunas lembaga dari  biji kedelai dapat menimbulkan rasa pahit dari tempe. Agar rasa tempe tidak pahit, tunas lembag pada   biji kedelai harus di buang. Sayangnya sampai sekarang belum twerdapat mesin pengupas yang dapat membuang tunas lembaga kedelai dari kepingan bijinya. Namun, ada cara mudah mengupas dan membelah biji kedelai, yaitu dengan merendam kedelai hingga kulit arinya terkelupas, selanjutnya kedelai digosok-gosokkan dengan kedua telapak tangan hingga biji kedelai terbelah.

Farmers Market sebuah mal mendirikan sebuah area pemrosesan tahu dan tempe dengan menggunakan mesin modern hasil karya Prof.Dr.Ir.Ign Suharto, APD dari Universitas Parahyangan. Pembuatan tahu dan tempe ini didasarkan pada konsep praktek terbaik dalam produksi makanan (Good Manufacturing Practices-GMP) seperti tingkat kebersihan (higienitas) dan juga sanitasi.

Tempe yang merupakan produk lokal dapat diproduksi secara higienis tidak seperti yang banyak orang mencap pemrosesan tahu itu selalu ‘jorok’ karena di injak-injak. Pemrosesan tempe ini telah diresmikan oleh Menteri Pertanian Indonesia, Bp. Anton Apriantono pada hari rabu, 4 maret 2009 kemarin. Beliau pun berpesan agar hal seperti ini agar terus berlanjut agar para petani dan usaha kecil di Indonesia  semakin baik kualitasnya.

                                                                     (Mesin pembuatan tempe)

 Produksi tempe agar tahan lama

Untuk tahan lama, tempe yang misalnya akan menjadi produk ekspor dapat di bekukan dan dikirim ke luar negeri di dalam peti kemas pendingin. Proses membekukan tempu untuk ekspor sbb : mula-mula tempe di iris-iris setebal 2 – 3 cm dan di blanching direndam dalam air mendidih selama lima menit untuk mengaktifkan kapang dan enzim. Kemudian tempe di bungkus dengan plastik selofan dan di bekukan pada suhu 40 derajat Celcius sekitar 6 jam. Setelah beku disimpan pada suhu beku sekitar 20 derajat celcius selama 100 hari tanpa mengalami perubahan sifat penampak warna, bau dan rasa.

Hasil olahan tempe agar awet dapat dilakukan dengan cara yaitu :

1. Pengeringan Tempe

Pengeringan adalah suatu proses menghilangkan sebagian air dari suatu bahan.Tujuan utama pengeringan adalah menurunkan aktivitas air (a) sampai pada tingkat tertentu, sehingga aktivitas mikroorganisma dan reaksi kimia serta biokimia yang terjadi ditekan seminimal mungkin sampai produk menjadi lebih awet.

Tempe dapat diawetkan dengan cara pengeringan menggunakan alat pengering (oven). Tempe yang akan dikeringkan mula-mula diiris-iris setebal 2,5 cm, kemudian dikukus pada suhu 1000C selama 10 menit. Pengukusan ini penting, karena menurut hasil penelitian Hermana et al. (1972) produk tempe kering yang dihasilkan tanpa perlakuan pengukusan ternyata mempunyai rasa pahit. Kemudian tempe dikeringkan dengan oven pada suhu 70oC selama 6 – 10 jam.
Hasil akhir merupakan tempe kering yang mempunyai kadar air 4 – 8 persen.  Tingkat kadar air yang rendah ini memungkinkah tempe dapat disimpan pada suhu kamar (dengan cara dibungkus plastik) selama berbulanbulan tanpa terjadi perubahan warna dan citarasa (flavor). Jika akan dipakai, tempe kering tersebut harus direkonstitusi dengan cara perendaman menggunakan air panas (90 – 1000C) selama 5 – 10 menit.

2. Pembekuan Tempe

Mula-mula tempe diiris-iris setebal 2 – 3 cm dan diblancing dengan merendam dalam air mendidih selama 5 menit untuk menginaktifkan kapang, enzim proteolitik dan enzim lipolitik. Kemudian tempe dibungkus dengan plastik selofan dan dibekukan pada suhu -24 sampai -400C. Setelah beku tempe dapat disimpan pada suhu beku selama 100 hari tanpa mengalami perubahan sifat-sifat organoleptik (penampakan, warna, bau dan rasa).

3. Pengalengan Tempe

Pengalengan makanan adalah suatu prose pengawetan makanan dengan mengepak bahan makanan tersebut di dalam wadah gelas atau kaleng yang dapat ditutup secara hermetis sehingga kedap udara, dipanaskan sampai suhu yang cukup untuk menghancurkan mikroorganisme pembusuk dan patogen di dalam bahan, kemudian didinginkan dengan cepat untuk mencegah terjadinya over cooking dari bahan makanan serta menghindari aktifnya kembali bakteri tahan panas (thermofilik). Selama proses pengalengan diusahakan agar pemanasan yang diberikan tidak mengakibatkan kerusakan nilai gizi pangan yang dikalengkan.

  • Persiapan Bahan

Mula-mula tempe diiris-iris setebal 2 – 3 cm dengan panjang sebesar 2/3 panjang kaleng/gelas jar dan diblancing dengan cara merendamkannya dalam air mendidih selama 5 menit untuk menginaktifkan kapang enzim kapang enzim proteolitik dan enzim lipolitik.

  • Pengisian (filling)
  1. Masukkan potongan-potongan tempe ke dalam kaleng atau gelas jar sampai batas 0,25 inci dari permukaan kaleng atau 0,5 inci jika digunakan gelas jar.
  2. Tambahkan larutan garam 2 persen dalam keadaan panas sampai batas 0,25 inci dari

permukaan baik kaleng maupun gelas jar. Larutan garam yang digunakan harus bersih yang dapat dilakukan dengan cara penyaringan.

  • Exhausting dan Penutupan

Kaleng atau gelas yang telah diisi tersebut di exhaust dengan cara memanaskan di dalam water bath sampai 2/3 bagian gelas jar atau kaleng terendam dan dibiarkan sampai mencapai suhu 160oF selama 5 – 10 menit. Kemudian kaleng atau gelas jar cepat-cepat ditutup dengan menggunakan alat double-seamer. Jangan membiarkan kaleng atau gelas jar menjadi dingin sebelum processing.

  • Processing
    Masukkan kaleng atau gelas jar yang sudah ditutup tersebut ke dalam retort (otoklaf) kemudian disterilisasi pada suhu 240oF selama 30 menit untuk kaleng dan 35 menit untuk gelas jar.
  • Pendinginan
    Dinginkan dengan segera kaleng yang sudah disterilisasi tersebut dalam air mengalir sampai kira-kira mencapai suhu 1000C. Untuk gelas jar, pendinginannya dilakukan dengan membiarkan di udara terbuka. Kemudian kaleng dikeringkan dengan lap bersih dan disimpan (Santoso, 2005).

Kajian Agama

Di dalam Al-Quran secara tersirat Allah SWT telah menyiratkan akan pentingnya segala hal yang ada dilangit maupun yang ada dibumi sehingga manusia diharapkan untuk lebih peka. Termasuk mikroorganisme yang merupakan contoh mahluk hidup mikroskopis yang Allah ciptakan dengan bentuk dan struktur yang sudah dirancang sebaik-sebaiknya, hal ini tersirat dalam beberapa ayat di dalam Al-Quran diantaranya dalam :

QS. Al-furqan : 2

Artinya : “yang kepunyaan-Nya lah kerajaan langit dan bumi, dan Dia tidak mempunyai anak, dan tidak ada sekutu baginya dalam kekuasaan-Nya, dan Dia telah menciptakan segala sesuatu, dan Dia menetapkan ukuran-ukurannya dengan serapi-rapinya”.

Maksudnya: segala sesuatu yang dijadikan Tuhan diberi-Nya perlengkapan-perlengkapan dan persiapan-persiapan, sesuai dengan naluri, sifat-sifat dan fungsinya masing-masing dalam hidup.

Pada Al Furqan yang dijelaskan adalah bahwa Allah menciptakan mahluk kecil yang bernama bakteri dalam bentuk dan ukuran yang memang sudah dirancang dengan sebaiknya-baiknya. Mahluk mikroskopik yang hanya bias dilihat dengan bantuan mikroskop dan terdapat susunan yang begitu rumit didalamnya, di dalam susunan rumit itulah terdapat manfaat yang luar biasa yang Allah simpan untuk dipergunakan sebaik-baiknya. Manfaat yang bisa digunakan adalah dengan penggunaan fermentasi menggunakan bakteri, menghasilkan Yogurth yang sangat baik untuk pencernaan dan lain sebagainya.

Kesimpulan

  1. Jamur Rhizopus oryzae merupakan jamur yang sering digunakan dalam pembuatan tempe. Jamur Rhizopus oryzae aman dikonsumsi karena tidak menghasilkan toksin dan mampu menghasilkan asam laktat. Jamur Rhizopus oryzae mempunyai kemampuan mengurai lemak kompleks menjadi trigliserida dan asam amino. Selain itu jamur Rhizopus oryzae mampu menghasilkan protease. Rhizopus sp tumbuh baik pada kisaran pH 3,4-6. Pada penelitian semakin lama waktu fermentasi, pH tempe semakin meningkat sampai pH 8,4, sehinggajamur semakin menurun karena pH tinggi kurang sesuai untuk pertumbuhan jamur. Secara umum jamur juga membutuhkan air untuk pertumbuhannya, tetapi kebutuhan air jamur lebih sedikit dibandingkan dengan bakteri. Selain pH dan kadar air yang kurang sesuai untuk pertumbuhan jamur, jumlah nutrien dalam bahan, juga dibutuhkan oleh jamur.
  2. Fermentasi merupakan tahap terpenting dalam proses pembuatan tempe. Menurut hasil penelitian pada tahap fermentasi terjadi penguraian karbohidrat, lemak, protein dan senyawa-senyawa lain dalam kedelai menjadi molekul-molekul yang lebih kecil sehingga mudah dimafaatkan tubuh. Pada proses fermentasi kedelai menjadi tempe terjadi aktivitas enzim amilolitik, lipolitik dan proteolitik, yang diproduksi oleh kapang Rhizopus sp. Pada proses pembuatan tempe, sedikitnya terdapat empat genus rhizopus yang dapat digunakan. Rhizopus oligosporus merupakan genus utama, kemudian Rhizopus oryzae merupakan genus lainnya yang digunakan pada pembuatan tempe Indonesia.

 

Daftar Pustaka

Santoso. 2005. Teknologi Pengolahan Kedelai. Fakultas Pertanian Universitas Wdyagama,Malang.
sutikno. 2009. http://sutikno.blog.uns.ac.id/2009/04/28/fermentasi-tempe/

Warisno dan Kres Dahana. 2010. Meraup Untung dari Olahan Kedelai. Jakarta Selatan: Penerbit PT. Agro Media Pustaka

http://aguskrisnoblog.wordpress.com/2011/01/13/peranan-rhizopus-oryzae-pada-industri-tempe-

dalam-peranan-peningkatan-gizi-pangan/

http://arifqbio.multiply.com/journal/item/8/Seri_Bioteknologi:

http://frisky-marto.blogspot.com/2010/03/imu-gizi-dalam-keperawatan.html:

http://id.answers.yahoo.com/question/index?qid=20101003024319AAEhf57

http://id.wikipedia.org/wiki/Tempe

http://karya-uniq.blogspot.com/http://karya-uniq.blogspot.com/:

http://sutikno.blog.uns.ac.id/2009/04/28/fermentasi-tempe/

http://Www.Crayonpedia.Org/Mw/Bab_Xiii_Bioteknologi_Dan_Peranannya_Bagi_Kehidupan: 

http://www.detikfood.com/read/2009/03/06/112018/1095428/294/pembuatan-tahu-dan-tempe-higienis-dan-modern-diresmikan

PEMANFAATAN MIKROORGANISME DI BIDANG PANGAN BERBASIS BIOTEKNOLOGI KONVENSIONAL

A. MIKROORGANISME

Mikroorganisme atau mikroba adalah organisme yang berukuran sangat kecil sehingga untuk mengamatinya diperlukan alat bantuan. Mikroorganisme disebut juga organisme mikroskopik. Mikroorganisme dapat menjadi bahan pangan ataupun mengubah bahan pangan menjadi bentuk lain. Proses yang dibantu oleh mikroorganisme misalnya melalui fermentasi, seperti keju, yoghurt, dan berbagai makanan lain termasuk kecap dan tempe. Pada masa mendatang diharapkan peranan mikroorganisme dalam penciptaan makanan baru seperti mikroprotein dan protein sel tunggal. Mengenal sifat dan cara hidup mikroorganisme juga akan sangat bermanfaat dalam perbaikan teknologi pembuatan makanan.

B. JENIS-JENIS MIKROORGANISME YANG DIMANFAATKAN UNTUK MENINGKATKAN PRODUK PANGAN

No.

Bahan Pangan

Mikroorganisme

Golongan

Produk

1 Susu Lactobacillus bulgaricus
Streptococcus termophillus
Streptococcus lactis
Panicillium requiforti
Propioni bacterium
Lactobacillus casei
Bakteri
Bakteri
Bakteri
Jamur
Bakteri
Bakteri
Yoghurt
Yoghurt
Mentega
Keju
Keju Swiss
Susu asam
2 Kedelai Rhizopus oligosporus
Rhizopus stoloniferus
Rhizopus oryzae
Aspergillus oryzae
Jamur
Jamur
Jamur
Jamur
Tempe
Tempe
Tempe
Kecap
3 Kacang tanah Neurospora sitophyla Jamur Oncom
4 Beras Saccharomyces cereviseae
Endomycopsis fibulegera
Jamur
Jamur
Tape Ketan
5 Singkong Saccharomyces elipsoides
Endomycopsis fibulegera
Jamur
Jamur
Tape singkong
6 Air kelapa Acetobacter xylinum Bakteri Nata de coco
7 Tepung gandum Saccharomyces elipsoides Jamur Roti
8 Kubis Enterobacter sp. Bakteri Asinan
9 Padi-padian atau umbi-umbian Saccharomyces cereviseae
Saccharomyces caelsbergensis
Jamur Minuman beralkohol
10 Mikroorganisme Spirulina
Chlorella
Alga bersel satu Protein sel tunggal

 

 

 

 

 

 

 

 

 

 

 

 

C. BIOTEKNOLOGI

Bioteknologi adalah cabang ilmu yang mempelajari pemanfaatan makhluk hidup (bakteri, fungi, virus, dan lain-lain) maupun produk dari makhluk hidup (enzim, alkohol) dalam proses produksi untuk menghasilkan barang dan jasa.

Bioteknologi secara umum berarti meningkatkan kualitas suatu organisme melalui aplikasi teknologi. Aplikasi teknologi tersebut dapat memodifikasi fungsi biologis suatu organisme dengan menambahkan gen dari organisme lain atau merekayasa gen pada organisme tersebut.

 

D. BIOTEKNOLOGI KONVENSIONAL/ TRADISIONAL

Bioteknologi konvensional merupakan bioteknologi yang memanfaatkan mikroorganisme untuk memproduksi alkohol, asam asetat, gula, atau bahan makanan, seperti tempe, tape, oncom, dan kecap. Mikroorganisme dapat mengubah bahan pangan.

Proses yang dibantu mikroorganisme, misalnya dengan fermentasi, hasilnya antara lain tempe, tape, kecap, dan sebagainya termasuk keju dan yoghurt. Proses tersebut dianggap sebagai bioteknologi masa lalu. Ciri khas yang tampak pada bioteknologi konvensional, yaitu adanya penggunaan makhluk hidup secara langsung dan belum tahu adanya penggunaan enzim.

 

 

E. PEMANFAATAN BIOTEKNOLOGI KONVENSIONAL DI BIDANG PANGAN

 

1. Pengolahan Produk Susu

Susu dapat diolah dengan bioteknologi sehingga menghasilkan produk-produk baru, seperti yoghurt, keju, dan mentega.

Yoghurt

-       Untuk membuat yoghurt, susu dipasteurisasi terlebih dahulu, selanjutnya sebagian besar lemak dibuang.

-       Mikroorganisme yang berperan dalam pembuatan yoghurt, yaitu Lactobacillus bulgaricus dan Streptococcus thermophillus.

-       Kedua bakteri tersebut ditambahkan pada susu dengan jumlah yang seimbang, selanjutnya disimpan selama ± 5 jam pada temperatur 45oC.

-       Selama penyimpanan tersebut pH akan turun menjadi 4,0 sebagai akibat dari kegiatan bakteri asam laktat.

Selanjutnya susu didinginkan dan dapat diberi cita rasa. Yoghurt yang nikmat dan bergizi siap dinikmati.

  

Yoghurt dalam kemasan                                        Yoghurt siap saji

 

Metabolisme Bakteri Lactobacillus bulgaricus dan Streptococcus thermophilus Menjadi Yoghurt

Prinsip pembuatan yoghurt adalah fermentasi susu dengan cara penambahan bakteri-bakteri Laktobacillus bulgaris dan Streptoccus thermophillus. Dengan fermentasi ini maka rasa yoghurt akan menjadi asam, karena adanya perubahan laktosa menjadi asam laktat oleh bakteri-bakteri tersebut. Apabila tidak diinginkan rasa yang tidak terlalu asam, tambahkan zat pemanis (gula, sirup) maupun berbagai flavour buatan dari buah-buahan strawberry, nenas, mangga, jambu, dan sebagainya.

Minuman lactobacillus yang banyak dijual di pasaran dan yoghurt ternyata punya perbedaan. Menurut Carmen, dalam proses pembuatannya, minuman lactobacillus hanya menggunakan satu bakteri yaitu Lactobacillus bulgaricus. Sedangkan prinsip pembuatan yoghurt adalah fermentasi susu dengan menggunakan bakteri Lactobacillus bulgaricus dan Streptococcus thermophilus. Kedua macam bakteri tersebut akan menguraikan laktosa (gula susu) menjadi asam laktat dan berbagai komponen aroma dan citarasa. Lactobacillus bulgaricus lebih berperan pada pembentukan aroma, sedangkan Streptococcus thermophilus lebih berperan pada pembentukan cita rasa yoghurt.

Proses fermentasi yoghurt berlangsung melalui penguraian protein susu. Sel-sel bakteri menggunakan laktosa dari susu untuk mendapatkan karbon dan energi dan memecah laktosa tersebut menjadi gula sederhana yaitu glukosa dan galaktosa dengan bantuan enzim β-galaktosidase. Proses fermentasi akhirnya akan mengubah glukosa menjadi produk akhir asam laktat.

Laktosa → Glukosa+Galaktosa →Asam piruvat → Asam laktat+CO2+H2O

Adanya asam laktat memberikan rasa asam pada yoghurt. Hasil fermentasi susu ini merubah tekstur susu menjadi kental. Hal ini dikarenakan protein susu terkoagulasi pada suasana asam, sehingga terbentuk gumpalan. Proses ini memakan waktu 1-3 hari yang merupakan waktu tumbuh kedua bakteri, dan bekerja menjadi 2 fasa, kental dan bening encer dan rasanya asam.

Setelah diketemukannya jenis bakteri Lactobacillus yang sifat-sifatnya dapat bermanfaat bagi manusia dan dapat dibuat menjadi yoghurt, maka berkembanglah industri pembuatan yoghurt. Yoghurt ini dibuat dari susu yang difermentasikan dengan menggunakan bakteri Lactobacillus, pada suhu 40 derajat celcius selama 2,5 jam sampai 3,5 jam. Asam laktat yang dihasilkan oleh bakteri tersebut dapat mengubah susu menjadi yogurt yang melalui proses fermentasi.

 

Teknologi Tepat Guna yang Digunakan dalam Produksi Yoghurt

                       Proses pembuatan Yoghurt melalui teknik Homogenasi

                                         Skema Proses Pembuatan Yoghurt Hingga Pemasaran

Alat-Alat yang Digunakan dalam Proses Produksi Yoghurt

(panci dan kompor)                                  (pengaduk)

     

         Penuangan susu                                Mixing

Keju

Pada pembuatan keju, kelompok bakteri yang dipergunakan adalah bakteri asam laktat. Bakteri asam laktat yang bisa digunakan adalah Lactobacillus dan Sterptococcus. Ada 4 macam jenis keju, yaitu :

  1. Keju sangat keras, contoh: keju Romano, keju Permesan.
  2. Keju keras, contoh: keju Cheddar, keju Swiss.
  3. Keju setengah lunak, contoh: keju Requefort (keju biru).
  4. Keju lunak, contoh: keju Camembert.

-       Proses pembuatan keju diawali dengan pemanasan susu dengan suhu 90oC atau dipesteurisasikan melalui pemanasan sebelum kultur bakteri asam laktat dinokulasikan (ditanam), kemudian didinginkan sampai 30oC.

-       Selanjutnya bakteri asam laktat dicampurkan.

-       Akibat dari kegiatan atau aktivitas bakteri tersebut pH menurun dan susu terpisah menjadi cairan whey dan dadih padat, proses ini disebut pendadihan.

-       Kemudian ditambahkan enzim renin dari lambung sapi muda untuk mengumpulkan dadih.

-       Enzim renin dewasa ini telah digantikan dengan enzim buatan, yaitu klimosin.

-   Dadih yang terbentuk selanjutnya dipanaskan pada temperatur 32oC – 42oC dan ditambah garam, kemudian ditekan untuk membuang air dan disimpan agar matang. Adapun whey yang terbentuk diperas lalu digunakan untuk makanan sapi.

 

Metabolisme Bakteri Asam Laktat

Bakteri asam laktat berfungsi memfermentasikan laktosa dalam susu menjadi asam laktat menurut reaksi berikut :

C12H22O11 + H2O  →  4CH3CHOHCOOH
Laktosa            Air                   Asam laktat

Tahapan metabolisme bakteri asam laktat dalam pembuatan keju adalah:

1. Pengasaman

Susu dipanaskan agar bakteri asam laktat, yaitu Streptococcus and Lactobacillus dapat tumbuh. Bakteri-bakteri ini memakan laktosa pada susu dan merubahnya menjadi asam laktat. Saat tingkat keasaman meningkat, zat-zat padat dalam susu (protein kasein, lemak, beberapa vitamin dan mineral) menggumpal dan membentuk dadih.

2. Pengentalan

Bakteri rennet ditambahkan ke dalam susu yang dipanaskan yang membuat protein menggumpal dan membagi susu menjadi bagian cair (air dadih) dan padat (dadih). Setelah dipisahkan, air dadih kadang dipakai untuk membuat keju seperti Ricotta dan Cypriot hallumi namun biasanya air dadih tersebut dibuang. Rennet mengubah gula dalam susu menjadi asam dan protein yang ada menjadi dadih. Jumlah bakteri yang dimasukkan dan suhunya sangatlah penting bagi tingkat kepadatan keju. Proses ini memakan waktu antara 10 menit hingga 2 jam, tergantung kepada banyaknya susu dan juga suhu dari susu tersebut.

3. Pengolahan dadih

Beberapa keju lunak dipindahkan dengan hati-hati ke dalam cetakan. Sebaliknya pada keju-keju lainnya, dadih diiris dan dicincang menggunakan tangan atau dengan bantuan mesin supaya mengeluarkan lebih banyak air dadih. Semakin kecil potongan dadih maka keju yang dihasilkan semakin padat.

 

Teknologi Tepat Guna yang Digunakan dalam Produksi Keju

a.      Proses Produksi Keju Cheddar

 

b.      Produksi Keju Mozarella

 

Alat dan Bahan yang Digunakan dalam Pembuatan Keju

Keterangan :

1. Susu (dalam gelas takar)

2. Termometer

3. Sendok takar

4. Gelas-gelas

5. Kultur Lactobaccilus bulgaricus

6. Lipase

7. Rennet

8. pH paper

 

 

Mentega

-       Pembuatan mentega menggunakan mikroorganisme Streptococcus lactis dan Lectonosto ceremoris.

-       Bakteri-bakteri tersebut membentuk proses pengasaman.

-       Selanjutnya, susu diberi cita rasa tertentu dan lemak mentega dipisahkan.

-       Kemudian lemak mentega diaduk untuk menghasilkan mentega yang siap dimakan.

 

Teknologi Tepat Guna yang Digunakan dalam Pembuatan Mentega

            Dalam membuat mentega, alat yang dibutuhkan:

  • Mixer
  • Saringan
  • Mangkuk / Baskom
  • Spatula

Keterangan penggunaan alat:

  1. Masukkan bahan (heavy cream) ke dalam mixer dan aduk dengan menggunakan adukan jenis balloon whisk.
  2. Tutup permukaan bowl mixer supaya heavy cream tidak mengotori dapur kita saat dikocok.
  3. Kocok dengan kecepatan sedang selama 5 – 7 menit bila menggunakan mixer jenis heavy duty.
  4. Hentikan mixer pada saat mentega sudah terpisah dari cairan cream.
  5. Keluarkan kocokan butter dari dalam bowl mixer, kemudian saring menggunakan saringan yang bersih.
  6. Beri mentega dengan sedikit air yang bertujuan untuk benar-benar membersihkan mentega dari campuran cairan sisa heavy cream.
  7. Aduk mentega dengan menggunakan spatula supaya halus dan tidak bergerindil. Aduk selama 2 menit.
  8. Bila ingin membuat jenis mentega yang asin, bisa menambahkan garam saat proses mengaduk ini berlangsung. Bila sudah halus, simpan mentega dalam wadah tertutup dan siap digunakan.

 

 

2. Produk Makanan Non – Susu

Kecap

-       Dalam pembuatan kecap, jamur, Aspergillus wentii dibiakkan pada kulit gandum terlebih dahulu.

-      Jamur Aspergillus wentii bersama-sama dengan bakteri asam laktat yang tumbuh pada kedelai yang telah dimasak menghancurkan campuran gandum.

-       Setelah proses fermentasi karbohidrat berlangsung cukup lama akhirnya akan dihasilkan produk kecap.

 Kecap

Teknologi Tepat Guna yang Digunakan dalam Produksi Kecap

Skema proses pembuatan kecap

 

Pembuatan kecap dengan cara fermentasi di Indonesia, secara singkat adalah sebagai berikut :

  • Kedelai dibersihkan dan direndam dalam air pada suhu kamar selama 12 jam, kemudian direbus selama 4-5 jam sampai lunak.
  • Setelah direbus, kedelai ditiriskan dan didinginkan di atas tampah.
  • Tampah tersebut ditutup dengan lembaran karung goni, karung terigu, atau lembaran plastik. Karena terus berulang kali dipakai, bahan yang digunakan sebagai penutup ini biasanya mengandung spora, sehingga berfungsi sebagai inokulum.
  • Spora kapang Aspergillus wentii akan bergerminasi dan tumbuh pada substrat kedelai dalam waktu 3 sampai 12 hari pada suhu kamar.
  • Kapang dan miselium yang terbentuk akibat fermentasi inilah yang dinamakan koji.
  • Selanjutnya, koji diremas-remas, dijemur, dan kulitnya dibuang.
  • Koji dimasukkan ke dalam wadah dari tanah, tong kayu, atau tong plastik yang berisi larutan garam 20-30 persen.
  • Campuran antara kedelai yang telah mengalami fermentasi kapang (koji) dengan larutan garam inilah yang dinamakan moromi.
  • Fermentasi moromi dilanjutkan selama 14-120 hari pada suhu kamar.
  • Setelah itu, cairan moromi dimasak dan kemudian disaring.

Skema proses produksi kecap

-       Untuk membuat kecap manis, ke dalam filtrat ditambahkan gula merah dan bumbu-bumbu lainnya, diaduk sampai rata dan dimasak selama 4-5 jam.

-       Untuk membuat kecap asin, sedikit gula merah ditambahkan ke dalam filtrat, diaduk, dan dimasak selama 1 jam.

-       Kecap yang telah masak, selanjutnya disaring dengan alat separator untuk memisahkan kecap dari berbagai kotoran, kemudian didinginkan.

-       Langkah akhir pembuatan kecap adalah memasukkannya ke dalam botol gelas, botol plastik, atau botol pet.

-       Secara tradisional, kecap dibuat dengan proses fermentasi, yaitu menggunakan jasa mikroorganisme kapang, khamir, dan bakteri untuk mengubah senyawa makromolekul kompleks yang ada dalam kedelai (seperti protein, lemak, dan karbohidrat) menjadi senyawa yang lebih sederhana, seperti peptida, asam amino, asam lemak dan monosakarida.

-       Adanya proses fermentasi tersebut menjadikan zat-zat gizi dalam kecap menjadi lebih mudah dicerna, diserap, dan dimanfaatkan oleh tubuh.

 

 

Tempe                                                            

-       Jenis tempe sebenarnya sangat beragam, bergantung pada bahan dasarnya, namun yang paling luas penyebarannya adalah tempe kedelai.

-       Untuk membuat tempe, selain diperlukan bahan dasar kedelai juga diperlukan ragi.

-       Ragi merupakan kumpulan spora mikroorganisme, dalam hal ini kapang.

-       Dalam proses pembuatan tempe paling sedikit diperlukan empat jenis kapang dari genus Rhizopus, antara lain :

a.         Rhyzopus oligosporus

b.         Rhyzopus stolonifer

c.         Rhyzopus arrhizus

d.         Rhyzopus oryzae

-       Miselium dari kapang tersebut akan mengikat keping-keping biji kedelai dan memfermentasikannya menjadi produk tempe.

-       Proses fermentasi tersebut menyebabkan terjadinya perubahan kimia pada protein, lemak, dan karbohidrat.

-       Perubahan tersebut meningkatkan kadar protein tempe sampai 9x lipat.

   

Perebusan kedelai                                      Tempe yang sudah jadi

 

 

Teknologi Tepat Guna yang Digunakan dalam Produksi Tempe

                                                                  Proses Produksi Tempe

 

 

Alat dan Bahan yang Digunakan dalam Pembuatan Tempe

Alat :                                                                          Bahan :
1. Panci                                                                      1. Kedelai

2. Kompor                                                                  2. Ragi

3. Saringan                                                                 3. Air

4. Plastik untuk mengemas

   

 

 

 

 

 

 

 

 

Roti

-     Pada pembuatan roti, biji-bijian serelia dipecah dahulu untuk membuat tepung terigu. Selanjutnya oleh enzim amilase tepung dirubah menjadi glukosa.

-       Selanjutnya khamir Saccharomyces cerevisiae, yang akan memanfaatkan glukosa sebagai substrat respirasinya sehingga akhirnya membentuk gelembung-gelembung yang akan terperangkap pada adonan roti. Adanya gelembung ini menyebebkan roti bertekstur ringan dan mengembang. Sedangkan jika ditambah protease maka roti yang dihasilkan akan bertekstur lebih halus.

Teknologi Tepat Guna yang Digunakan dalam Produksi Roti

Skema produksi roti

 

Alat-Alat yang Digunakan Dalam Proses Produksi Roti

 

Mixer                                                               Oven

     

 

 

 

 

 

 

Mencampurkan bahan                         Untuk memanggang roti

 

 

F. KAJIAN RELIGIUS

Allah menciptakan jasad-jasad renik di dunia ini sesuai dengan fungsinya masing-masing. Meskipun makhluk yang sangat kecil, tetapi mikroorganisme memilki peranan penting bagi manusia terutama untuk meningkatkan produk pangan. Sebagaimana dengan firman Allah dalam :

  • Al-Furqon (25) : ayat 2

الَّذِي لَهُ مُلْكُ السَّمَاوَاتِ وَالْأَرْضِ وَلَمْ يَتَّخِذْ وَلَدًا وَلَمْ يَكُن لَّهُ شَرِيكٌ فِي الْمُلْكِ وَخَلَقَ كُلَّ شَيْءٍ فَقَدَّرَهُ تَقْدِيرًا [٢٥:٢]

Artinya: Yang kepunyaan-Nya-lah kerajaan langit dan bumi, dan Dia tidak  mempunyai anak, dan tidak ada sekutu bagiNya dalam kekuasaan(Nya), dan dia telah menciptakan segala sesuatu, dan Dia menetapkan ukuran-ukurannya dengan serapi-rapinya.

(Maksud dari ayat tersebut ialah: Segala sesuatu yang dijadikan Tuhan diberi-Nya perlengkapan-perlengkapan dan persiapan-persiapan, sesuai dengan naluri, sifat-sifat dan fungsinya masing-masing dalam hidup).

  • Al-Maaidah (5) : ayat 87

يَا أَيُّهَا الَّذِينَ آمَنُوا لَا تُحَرِّمُوا طَيِّبَاتِ مَا أَحَلَّ اللَّهُ لَكُمْ وَلَا تَعْتَدُوا ۚ إِنَّ اللَّهَ لَا يُحِبُّ الْمُعْتَدِينَ [٥:٨٧]

Artinya : Hai orang-orang yang beriman, janganlah kamu haramkan apa-apa yang baik yang telah Allah halalkan bagi kamu, dan janganlah kamu melampaui batas. Sesungguhnya Allah tidak menyukai orang-orang yang melampaui batas.

(Maksud dari ayat tersebut ialah : makanlah yang halal dan jangan sampai melampui batas, jika sampai melampui batas kita akan mengalami kerugian bagi tubuh kita sendiri).

  • Al-Baqarah (2) : ayat 173

إِنَّمَا حَرَّمَ عَلَيْكُمُ الْمَيْتَةَ وَالدَّمَ وَلَحْمَ الْخِنزِيرِ وَمَا أُهِلَّ بِهِ لِغَيْرِ اللَّهِ ۖ فَمَنِ اضْطُرَّ غَيْرَ بَاغٍ وَلَا عَادٍ فَلَا إِثْمَ عَلَيْهِ ۚ إِنَّ اللَّهَ غَفُورٌ رَّحِيمٌ [٢:١٧٣]

Artinya : Sesungguhnya Allah hanya mengharamkan bagimu bangkai, darah, daging babi, dan binatang yang (ketika disembelih) disebut (nama) selain Allah. Tetapi barangsiapa dalam keadaan terpaksa (memakannya) sedang dia tidak menginginkannya dan tidak (pula) melampaui batas, maka tidak ada dosa baginya. Sesungguhnya Allah Maha Pengampun lagi Maha Penyayang.

(Maksud dari ayat tersebut ialah : makanlah yang halal dan jangan sampai melampui batas, jika sampai melampui batas kita akan mengalami kerugian bagi tubuh kita sendiri tetapi tidak ada dosa bagi kita, asalkan jangan makan makanan yang haram seperti bangkai dan daging babi).

DAFTAR PUSTAKA

http://aguskrisnoblog.wordpress.com/2011/11/02/optimalisasi-peran-lactobacillus-bulgaricus-dalam-proses-produksi-yogurt/ (diunduh 13 Desember 2011)

http://aguskrisnoblog.wordpress.com/2011/01/13/peranan-rhizopus-oryzae-pada-industri-tempe-dalam-peranan-peningkatan-gizi-pangan/ (diunduh 4 Desember 2011)

http://books.google.co.id/books?id=OzMMylYcf0IC&pg=PA35&lpg=PA35&dq=metabolisme+saccharomyces+cerevisiae+menjadi+roti&source=bl&ots=n-6oIJDhrF&sig=Kiuek79MBOwv0ZeyddVHD5xBhww&hl=id&ei=EVPITrXDAeuNmQXV54QE&sa=X&oi=book_result&ct=result&resnum=4&ved=0CC0Q6AEwAw#v=onepage&q&f=false (diunduh 27 Oktober 2011)

http://gugusimam.wordpress.com/2010/10/17/proses-produksi-keju/ (diunduh 28 Oktober 2011)

http://id.wikipedia.org/wiki/Fermentasi (diunduh 28 Oktober 2011)

http://nurhidayat.lecture.ub.ac.id/2009/04/tahapan-proses-pembuatan-tempe/comment-page-1/ (diakses 4 Desember 2011)

http://www.smallcrab.com/makanan-dan-gizi/878-pengolahan-pangan-dengan-fermentasi (diunduh 3 Desember 2011)

http://tries-cheese.blogspot.com/  (diunduh 12 Desember 2011)

BAKTERI PATOGEN PADA SALURAN PERNAFASAN

 Gambar Infeksi pada saluran pernafasan

Bernapas adalah sebuah proses yang dilakukan oleh sebagian besar mahluk hidup di muka bumi ini. Dalam prosesnya, bernapas juga memerlukan suatu sistem yang kita kenal sebagai sistem pernapasan. Di dalam sistem pernapasan, kita memiliki apa yang disebut sebagai saluran pernapasan. Saluran pernapasan merupakan sebuah saluran yang berawal dari hidung ataupun mulut dan berakhir di paru-paru.

Saluran pernapasan kita terdiri dari saluran hidung à faring à laring à trakea à bronkus à bronkiolus à alveolus. Saluran pernapasan ini bisa dibagi menjadi dua yaitu saluran pernapasan atas dan juga saluran pernapasan bawah. Saluran pernapasan atas dimulai dari saluran hidung hingga faring. Walaupun mempunyai sistem pertahanan tersendiri pada saluran pernapasan, namun saluran pernapasan ini juga rentan terhadap berbagai macam penyakit, misalnya saja yang sering kita kenal sebagai infeksi saluran pernapasan.

Saluran pernafasan sering terinfeksi patogen, karena kontak langsung dengan lingkungan dan secara terus menerus terpapar oleh mikroorganisme yang terdapat dalam udara yang dihirup. Beberapa mikroorganisme sangat virulen dapat menyebabkan infeksi, minimal pada orang yang rentan. Lingkungan saluran  pernafasan yang lembab dan hangat, merupakan tempat yang ideal untuk pertumbuhan mikroorganisme. Salah satu pertanyaan, mengapa mikroorganisme tersebut dapat atau tidak dapat menyebabkan infeksi.

Infeksi dapat terjadi pada beberapa bagian saluran pernafasan, dan tempat tersebut merupakan penentu utama manifestasi klinik. Konjungtiva, telinga bagian tengah dan sinus paranasal termasuk di dalamnya, karena daerah tersebut  berhubungan dengan saluran pernafasan. Manifestasi klinik infeksi saluran pernafasan bergantung pada kuman penyebab infeksi. Virus berperan penting pada saluran pernafasan atas, dan paling sering menyebabkan faringitis. Bakteri merupakan penyebab  utama otitis media, sinusitis, faringitis, epiglotitis, bronkhitis, dan pneumonia.

Penyebab infeksi ini bisa bermacam-macam dan salah satunya adalah bakteri. Ada berbagai macam bakteri yang bisa menyebabkan infeksi pada saluran pernapasan. Bakteri-bakteri ini bisa menular melalui berbagai cara seperti melalui udara, droplet, air, dan lain-lain. Terdapat beberapa bakteri penyebab infeksi saluran pernapasan, diantaranya Streptococcus, Mycobacterium tuberculosis, Streptococcus pneumoniae, Haemophilus influenza, Corynebacterium diphtheriae, Mycoplasma pneumonia, Bordetella pertussis, dan Legionella pneumophila.

1.Streptokokus

Streptokokus adalah patogen penting karena banyak infeksi hebat yang disebabkannya dan karena komplikasi yang mungkin terjadi setelah sembuh dari infeksi akut itu. Komplikasi yang terjadi setelah infeksi streptokokus meliputi demam reumatik dan glomerulonefritis akut.

Gambar : Streptokokus

Ciri-ciri Utama

Mikroba bersifat Gram-positif, bentuk kokus dengan penataan tunggal, berpasangan atau berantai. Lazimnya bersifat fakultatif anaerob, katalase-negatif dan fermentatif.

Mikroba ini banyak ditemukan di alam dan juga sebagai mikroba komensal pada hewan. Streptococcus yang bersifat patogen dapat ditemukan pada kulit, mukosa mebran, traktus genitalis dan saluran pencernaan.

Sifat Biakan

Beberapa galur Streptococcus hanya dapat tumbuh dalam keadaan anaerobik. Kelompok ini agak berbeda dengan Streptococcus lainnya yang lazimnya bersifat anaerobik oleh karena tidak dapat mensintesis senyawa “heme”. Kelompok Streptococcus anaerobik ini tidak dapat mensintesis sitokromdan dengan demikian tidak dapat melakukan fosforilasi oksidatif yang ditengahi oleh sitokrom-ETS. Berdasarkan sifat ini, maka untuk mengisolasi Streptococcus seringkali ditambahkan inhibitor sitokrom yaitu Na-azide.

Hemolisis

Daya kerja Streptococcus pada eritrosit kuda merupakan salah-satu dasar identifikasi kelompok ini. Pada umumnya galur yang bersifat patogen menghasilkan hemolisisn yang melisiskan eritrosit kuda. Ini disebut beta-hemolisis dan ditandai oleh zone terang disekeliling koloni pada biakan agar darah.

Pada kelompok vriridans akan terlihat hemofilis-alpha yang ditandai oleh perubahan warna kehijauan di sekitar kolonisetelah 18-24 jam bila diinkubasikan pada suhu 370 C. Bila Streptococcus kelompok ini kemudian diinkubasikan pada suhu yang rendah maka akan terlihat zone jernih di luar zone kehiajauan. Zone hijau ini tidak akan berubah warna meskipun diinkubasikan lebih lama.

Sifat hemolisis ini paling jelas terlihat pada koloni yang ditumbuhkan pada biakan agar tuang.

Infeksi Biogenik

Kelompok bakteri yang terutama menghasilkan nanah adalah staphylococcus, streptococcus dan corynebacterium. Bila bakteri piogenik merasuki jaringan maka akan terjadi proses peradangan yang ditandai dilatasi vaskuler dan peningkatan jumlah neutrofil dan plasma. Neutrofil akan melingkupi bakteri dengan proses fagositosis. Dalam proses fagositosis ini ada bakteri yang dihancurkan tetapi ada juga bakteri yang resisten terhadap enzim lisozim dan berkembang biak dalam neutrofil. Bakteri ini ada yang berbentuk toksin, sehingga menghancurkan neutrofil. Enzim yang dikeluarkan oleh neutrofil akan menyebabkan pencairan dari jaringan sel yang mati dan juga sel-sel fagosit. Sel dan jaringan yang mencair ini terlihat sebagai nanah yang kental dan bewarna kuning. Sifat kental dari nanah ini disebabkan deoksiribonukleoprotein dari inti sel yang rusak dan mati.

Berbagai penyakit yang ditimbulkan oleh infeksi streptococcus dipengaruhi oleh port d’entrée, jenis hewan dan species streptococcus. Tiga macam penyakit yang memperlihatkan gejala yang berbeda ialah “strangles” pada kuda, “jowl abcesses” pada babi dan anthritis. Infeksi streptococcus biasanya bersifat setempat, namun demikian dapat terjadi kematian akibat septicemia atau bakteriaemia.

Produk Metabolisme Streptococcus

  • Asam hialuronat

Faktor virulensi yang memberikan perlindungan terhadap fagositosis.

  • Protein-M

Penyebab sifat virulen, “type-specific immunity”.

  • Hemolisin

Streptolisin O dan S adalah penyebab beta-hemolisis. Antibodi terhadap streptolisin O merupakan petunjuk yang baik terhadap adanya infeksi di masa lampau.

  • Streptokinase

Menyebabkan lisis dari gumpalan fibrin.

  • Streptodornase

Deoksiribonuklease yang menyebabkan sifat kental DNA berkurang. Bila Streptococcus  mengandung enzim ini  maka nanahnya akan bersifat encer.

  • Hialuronidase

Keterkaitan antara produksi enzim ini dengan virulensi terlihat pada infeksi oleh S. cellulitis.

Infeksi Streptokokus Hemolitis Β Kelompok A

1.      Sakit tenggorokan streptokokus

Sifat-sifat klinis infeksi streptokokus bermacam-macam. Tipe yang paling sering adalah infeksi amandel dan faring. Pada anak-anak khususnya, sakit tenggorokan mungkin akut. Selaput lender biasanya merah dan membengkak, mengeluarkan nanah. Kelenjar limfa leher mungkin membesar dan suhu biasanya tinggi. Jumlah sel darah putih meningkat. Masa inkubasi bervariasi dari 1 sampai 3 hari. Epidemic penyakit ini biasanya sebagai akibat kontak dengan orang yang terinfeksi atau pembawa yang sehat. Studi epidemiologi  menunujukan bahwa biasanya anak sekolah yang membawa infeksi ini ke rumah dan menyebabkannya dalam keluarga.

2.      Impetigo

Impetigo (juga disebut pioderma streptokokus) adalah infeksi kulit yang terjadi paling sering pada anak-anak muda, terutama yang hidup dalam taraf sosioekonomi rendah yang padat. Impetigo streptokokus diciri dengan terjadinya lepuh kecil pada kulit yang kemudian membentuk kerak tipis berwarna kuning. Luka itu tidak sakit dan kesembuhan terjadi tanpa bekas.

                                                                          Gambar : Infeksi kulit

3.      Demam Skarlet

Demam skarlet mungkin disebabkan oleh tipe streptokokus kelompok apa saja, yang dapat menyekresi salah satu toksin eritrogen. Terdapat tiga tipe berbeda dari toksin ini yang juga disebut eksotoksin pirogen streptokokus yang masing-masing akan menyebabkan gatal kulit. Terdapat cukup data yang menyarankan bahwa gatal yang sebenarnya adalah akibat reaksi hipersensitivitas terhadap toksin. Jadi, demam skarlet adalah infeksi streptokokus (misalnya sakit tengggorokan) yang di dalamnya terlibat galur yang memproduksi toksin eritirogen. Kini diketahui bahwa seperti banyak bakteri yang memproduksi eksotoksin, streptokokus yang memproduksi toksin eritrogen bersifat melisogen dan produksi toksin adalah hasil lisogenisitasnya atau konversi lisogen. Streptokokus sendiri biasanya terbatas pada tenggorokan dan nasofaring, tetapi pada beberapa hal organisme ini mungkin menginvasi darah untuk menyebabkan infeksi streptokokus darah. Setelah mulainya sakit tenggorokan, biasanya gatal kulit demam skarlet muncul dalam 2 hari.

4.      Infeksi streptokokus kelompok A lain

Puerperal sepsis (infeksi kelahiran) adalah infeksi uterus yang telah meminta banyak korban jiwa wanita setelah kelahiran. Untungnya, teknik asepsis telah mengeliminasi banyak infeksi tipe ini di Negara maju. Streptokokus mungkin juga tersebar ke rongga hidung dan telinga tengah.                                     

Gambar : infeksi kelahiran

Komplikasi Nonsupuratif Lambat

Demam reumatik

Demam reumatik terjadi pada sejumlah kecil persentase infeksi streptokokus kelompok A hemolitis β, yang tidak diobati. Kesembuhan dari demam reumatik terjadi tanpa kerusakan permanen pada persendian, tetapi keterlibatan jantung adalah bagian terpenting penyakit ini, karena dalam organ inilah kerusakan permanen mungkin terjadi. Mekanisme yang digunakan streptokokus untuk menimbulkan demam reumatik masih belum jelas, tetapi banyak bukti kejadian menunjukan bahwa demam reumatik adalah akibat reaksi imunologi.

                                                                           Gambar : Reumatik

Glomerulonefritis

Glomerulonefritislebih jarang sebagai akibat infeksi streptokokus daripada demam reumatik. Glomerulonefritis diperkirakan sebagai penyakit autoimun yang di dalamnya streptokokus itu memiliki atau menyintesis antigen yang bereaksi silang dengan membran dasar  glomerulus ginjal atau streptokokus menyimpan kompleks antigen-antibodi pada membran dasar.

                                                                      Gambar : Infeksi ginjal

Pengobatan infeksi kelompok A

Penisilin masih merupakan antibiotika pilihan tetapi kebanyakan, para pakar menyetujui bahwa taraf penisilin tarapeutik harus dipertahankan untuk selama paling sedikit  8 sampai 10 hari untuk menjamin pemberantasan organisme seluruhnya. Terapi antibiotika yang intensif hanya menolong sedikit untuk memperpendek jalannya infeksi tenggorokan.

 

2.Mycobacterium

Mikroba yang termasuk kelompok ini bersifat tahan asam, berbentuk batang halus, tidak bergerak, tidak membentuk spora dan bersifat aerobic. Penguraian karbohidrat dilaksanakan melalui proses oksidasi.

Komponen Mycobacteria

Mikroba ini tidak menghasilkan eksotoksin. Kandungan lipidnya sangat tinggi (20-40% dari berat kering) bahan ini diduga sebagai penyebab resistensi pertahanan humoral, desinfektans, larutan asam dan basa.

Dinding sel yang tebal dari mycobacterium kaya akan asam mikolat dan asam lemak lainnya, sehingga menyebabkan mikroba ini bersifat hidrofobik dan bersifat impermeable terhadap zat warna.

Lipida yang terdapat pada mycobacterium ialah :

  1. Asam Mikolat
  2. LIlin D
  3. Mikosida
  4. Glikolipida

Mekanisme Infeksi Mycobacterium tuberculosis

Mikroba dikeluarkan melalui sputum dan saluran pernafasan. Infeksi terjadi melalui muntahan atau saluran pernafasan. Lesion utama terjadi pada paru-paru dan limfoglandula.

Beberapa Faktor yang Mempengaruhi Infeksi Tuberkulosis

  1. Kepadatan jumlah hewan dalam satu kandang.
  2. Faktor genetic
  3. Kekebalan alami dan kekebalan perolehan

 

Gambar Penyebaran tuberculosis

Patogenesis

Manifestasi penyakit tergantung pada masuknya mikroba. Jika terjadi melalui inhalasi, maka paru-paru dan limfoglandula tracheobronchial yang terserang. Jika melalui ingesti, maka jalur infeksi terjadi melalui limfoglandula mesenterium, dinding usus dan hati melalui sistem portal. Mikroba dari limfoglandula dapat mencapai duktus thorasikus melalui infeksi umum. Hipersensitivitas dan kekebalan seluler digertak disertai dengan penghambatan perkembangbiakan dan penyebaran mikroba. “Delayed hypersensitivity” yang disebabkan jumlah antigen yang banyak menyebabkan kerusakan jaringan. Pada umumnya lokus infeksi bersifat mikroskopik dan dapat menghilang dengan sendirinya. Namun, beberapa mikroorganisme dapat bertahan sehingga mengakibatkan tuberkel yang bersifat karakteristik.

 

Patogenitas Mycobacterium  tuberculosis

 Mikroba ini dapat menginfeksi manusia, primata dan kera. Primata dan kera dapat ditulari oleh manusia. Ternak disensitisasi oleh manusia. Pada babi infeksi terjadi melalui sisa makanan tercemar, gejala terlihat pada limfoglandula di daerah kepala. Ayam jarang terinfeksi. Anjing dan kucing dapat terinfeksi. Hewan percobaan, marmot bersifat peka terhadap infeksi M. tuberculosis.

Cara Pemeriksaan

Perlakuan pada bahan terduga harus hati-hati karena kemungkinan penularan. Pemeriksaan langsung pada bahan tersangka dilakukan dengan pewarnaan tahan-asam.

 

Isolasi

Diagnosis tuberkulosis sering kali didasarkan pada ditemukannya mikroba tahan-asam di lesion yang bersifat karakteristik. Bila bahan terduga berupa nodula, maka digunakan ”mortar” dengan pasir halus dan steril. Pada gerusan ditambahkan 10 ml 4% NaOH yang mengandung merah fenol, kemudian pusingkan. Sedimen dinetralisasikan dengan HCl 2N selama paling lama 30 menit. Sedimen ini kemudian diinokulasikan ke medium LOewenstein-jensen dan diinkubasikan pada 37ºC selama 6-8 minggu.

Identifikasi

Identifikasi didasarkan pada sifat biakan, pertumbuhan dan ciri biokimia. Peneguhan biasanya dilakukan di laboratorium rujukan.

 

Sifat Biakan

Koloni terlihat kering, berbutir, dan subur. Permukaan koloni terlihat kasar dan bewarna kuning. Pertumbuhan pada media padat dengan suhu inkubasi 37ºC terlihat setelah 2 minggu.

 

Resistensi

Pada umumnya mycobacteria bersifat resisten terhadap berbagai faktor fisik dan desinfektan kimia. Resisten ini disebabkan oleh kandungan lipida dalam dinding sel. Bahan yang mengandung tuberkulosis tetap hidup dalam karkas yang membusuk dan tanah lembab selam 1-4 tahun. Dalam tinja sapi yang kering mikroba ini dapat bertahan selam 150 hari. Pembekuan tidak mempengaruhi daya shidup mikroba. Kekeringan mempengaruhi daya hidup mikroba bila dilakukan bersamaan dengan sinar matahari. Mikroba ini resisten terhadap asam dan basa, namun fenol  (5%), lisol (3%), dan kresol berdya kerja sedang.

 

Pengobatan

Penggunaan obat mungkin tidak dapat diterapkan pada hewan. Obat yang paling ampuh dalam pengobatan tuberculosis adalah isoniazid. Obat ini digunakan bersama para-aminosalisilat atau ethambutol dan kadangkala bersama dengan streptomycin merupakan “triple therapy”. Pengobatan dapat diberikan selam 3 tahun, namun untuk streptomycin pengobatan dilakukan untuk beberapa bulan saja.

Beberapa galur dapat menjadi resisten terhadap streptomycin dan gangguan terhadap syaraf pendengaran dapat terjadi. Selain itu terdapat pula galur yang resisten terhadap isoniazid. Rifampin juga merupakan obat manjur dan dapat digabung dengan ioniazid. Penggabungan kedua obat ini sering diberikan pada hewan penderita di kebun binatang.

 

Pencegahan

Di lapangan, diagnosis dilakukan dengan uji tuberkulin yang didasarkan pada “Delayed-hypersensitivity”. Beberapa macam tuberculin dapat digunakan, semuanya mengandung protein mycobacterium yang menyebabkan hewan terinfeksi menjadi hipersensitif . “Old Tuberculin” menurut Koch merupakan filtrat dari biakan M. tuberculosis yang berumur 8 minggu.

Kekebalan

Meskipun antibody diproduksikan dalam tuberkulosis, imunitas terutama disebabkan (Cell Mediated Immunity) CMI. Vaksin yang terutama digunakan ialah vaksin BCG yang merupakan M. bovis yang hidup dan diatenuasikan dengan menumbuhkannya pada biakan kentang-gliserin empedu dengan pemindahan berulang kali. Vaksin ini digunakan untuk pencegahan penyakit pada pedet.

Hipersensitivitas terhadap tuberkulin menunjukan resistensi terhadap tuberkulin. Reaksi ini terkadang bersifat negatif bila tingkat infeksinya parah ataupun bila terdapat kelemahan tedapat pada CMI.

3. Streptococcus pneumoniae (Pneumokokus)

Klasifikasi

Kingdom         : Bakteri

Filum               : Frimicutes

Kelas               : Cocci

Ordo                : Lactobacillales

Famili              : Streptococcaceae

Genus              : Streptococcus

Spesies            : Streptococcus pneumonia

Pada tahun 1881, George Sternberg dan Louis Pasteur menemukan bakteri ini dalam saliva manusia di tempat yang terpisah. Walaupun mereka dapat membuat septikemia dengan menyuntikkan kuman ini pada kelinci, namun mereka tidak menghubungkannya dengan penyakit pneunomia. Kemudian pada tahun 1886 diketahui bahwa kuman ini dapat menyebabkan pneumonia lobaris, oleh Frunkel dan Weischselbaum di tempat yang terpisah juga.

Koloni Kuman dan Sifat Biaka

Kuman ini merupakan positif Gram berbentuk diplokokus dan seperti lanset. Namun pada perbenihan tua dapat nampak sebagai negatif Gram, tidak membentuk spora, tidak bergerak (tidak berflagel). S. pneunomiae adalah anaerob fakultatif, larut dalam empedu dan merupakan alfa hemolitis. Selubungnya terutama dibuat oleh jenis yang virulen.

S. pneunomiae tumbuh pada pH normal, yaitu 7,6-7,8, dan jarang terlihat tumbuh pada suhu di bawah 25°C dan di atas 41°C, melainkan tumbuh dengan suhu optimum 37,5°C. Glukosa dan gliserin meningkatkan perkembangbiakannya, tapi bertambahnya pembentukan asam laktat dapat menghambat dan membunuhnya, kecuali jika ditambahkan kalsium karbonat 1% untuk menetralkannya. Dalam lempeng agar darah sesudah pengeraman selama 48 jam akan terbentuk koloni yang bulat kecil dan dikelilingi zona kehijau-hijauan identik dengan zona yang dibentuk oleh Streptococcus viridans. Perbedaan antara S. pneumoniae dengan S. viridans tersebut adalah sifat S. viridans yang lisis dalam larutan empedu 10% (otolisis) atau natrium desoksikholat 2% dalam waktu 5-10 menit. Pneumokokus dapat dibedakan dengan kokus lainnya, sebab kuman ini dihambat pertumbuhannya oleh optokhin.

Pneumokokus tidak tahan terhadap sinar matahari langsung. Penyimpanan bakteri ini adalah baik jika dalam keadaan liofil. Kuman ini lebih mudah mati dengan fenol, HgCl2, kalium permanganat dan antiseptikum lainnya daripada Mikrokokus dan Streptokokus lain. Pneumokokus juga rentan terhadap sabun, empedu, natrium oleat, zat warna dan derivat kuinin. Sulfadiazin juga dapat menghambatnya, namun sering terjadi resistensi sesudah beberapa hari.

Manifestasi Klinis

Infeksinya pada manusia yang khas ialah menyebabkan penyakit pneumonia lobaris. Penyakit lain yang disebabkannya juga adalah sinusitis, otitis media, osteomielitis, artritis, peritonitis, ulserasi kornea, dan meningitis. Pneumonia lobaris dapat menyebabkan komplikasi berupa septikemia, empiema, endokarditis, perikarditis, meningitis dan artritis.

Patologi

Angka kematian pada pneumonia tergantung pada ras, seks, umur dan keadaan umum penderita, tipe kumannya, luasnya bagian paru-paru yang terkena, ada tidaknya septikemia, ada tidaknya komplikasi, pemberian terapi spesifik, dan faktor-faktor lainnya.

Pengobatan

Penisilin merupakan obat yang sangat efektif. Yang berbahaya bila terjadi infeksi sekunder oleh Stafilokokus yang resisten terhadap penisilin dan antibiotika lainnya. Dosis yang lebih tinggi diperlukan untuk mengobati meningitis agar dapat mencapai selaput otak. Namun, akhir-akhir ini pneumokokus sudah resisten terhadap banyak preparat antibiotika, misalnya tetrasiklin, eritromisin, dan linkonmisin. Peningkatan resistensi terhadap penisilin juga terlihat pada Pneumokokus yang diisolasi dari New Guinea.

4.Haemophilus influenzae

Klasifikasi

Divisi               : Bakteri

Kelas               : Schizomicetes

Ordo                : Eubacteriales

Famili              : Haemophilunaceae

Genus              : Haemophilus

Spesies            : Haemophilus influenzae

Bakteri H. influenzae  pertama kali ditemukan oleh Richard Pfeiffer (1892) ketika sedang terjadi wabah influenza. H. influenzae disalah artikan sebagai penyebab influenza sampai tahun 1933, ketika etiologi virus flu menjadi jelas.

Koloni Kuman dan Sifat Biakan

H. influenzae mempunyai ukuran (1 µm X 0.3 µm). Bakteri ini berbentuk cocobacillus negatif Gram dan merupakan anaerob fakultatif. Pada 1930, bakteri ini dibagi menjadi 2 jenis, yaitu koloni R yang dibentuk oleh kuman-kuman tak bersimpai (NTHi) dan koloni S yang dibentuk oleh kuman-kuman bersimpai.

Kuman-kuman koloni S dianggap virulen dan secara serologik dibagi dalam 6 tipe berdasarkan simpainya: a,b,c,d,e, dan f. Penyelidikan-penyelidikan menunjukkan bahwa H. influenzae tak bersimpai (rough) biasa diasosiasikan dengan penyakit saluran pernafasan kronik, terutama pada orang dewasa. Sedangkan H. influenzae bersimpai merupakan penyebab penyakit-penyakit invasif seperti meningtis, piartrosis, sellulitis, pneumonia, perikarditis, dan epiglotitis akut. Salah satu jenis dari kuman bersimpai ini adalah H. influenzae tipe b (Hib), yang merupakan penyebab sebagian besar penyakit invasif, termasuk penyakit pneunomia dan meningitis bakterial akut pada bayi dan anak-anak.

Sesuai dengan namanya, H. influenzae membutuhkan faktor-faktor pertumbuhan yang terdapat di dalam darah yang dilepaskan ketika sel darah merah mengalami lisis (haemo=darah, philos=menyukai).  Faktor-faktor tersebut adalah faktor X (hemin), suatu derivat haemoglobin yang termostabil, dan faktor V (nicotinamide-adenine-dinucleotide) yang termolabil. Spesies ini memerlukan salah satu atau kedua faktor pertumbuhan tersebut.

H. influenzae sangat peka terhadap disinfektan dan kekeringan. Kuman ini tumbuh optimum pada suhu 37°C dan pH 7,4-7,8 dalam suasana CO2 10%. Kuman ini juga tumbuh subur sebagai satelit Stafilokokus karena Stafilokokus menghasilkan faktor V.

Penyeberan

Infeksi oleh H. influenzae terjadi setelah mengisap droplet  yang berasal dari penderita baru sembuh, atau carrier, yang biasanya menyebar secara langsung saat bersin atau batuk. H. influenzae menyebabkan sejumlah infeksi pada saluran pernafasan bagian atas seperti faringitis, otitis media, dan sinusitis yang terutama penting pada penyakit paru kronik. Meningitis karena H. influenzae jarang terjadi pada bayi berumur kurang dari 3 bulan dan tidak umum dijumpai pada anak-anak diatas umur 6 tahun. Pada anak-anak, selain meningitis, H. influenzae tipe b juga menyebabkan penyakit bacterial epiglottitis akut.

Manifestasi Klinis

Gejala-gejala klinis yang disebabkan penyakit ini cukup banyak, tergantung letak infeksi dan jenis penyakit yang disebabkannya. Anak-anak mungkin memiliki gejala klinis yang berbeda tiap pribadi, namun jika disimpulkan, gejala klinis tersebut adalah Irritability (kekurangan makanan dan nutrisi saat bayi, demam (pada bayi prematur temperaturnya dibawah normal), sakit kepala, muntah, sakit di leher, sakit di punggung, posisi badan yang tidka biasa, kepekaan terhadap cahaya, epiglottitis, dyspnoea (sulit bernafas), dysphagia (sulit menelan), septic arthritis, cellulitis, pneumonia, sepicaemia, osteomyelitis, bacteramia, dan empyema. Kasus Hib jarang terjadi pada bayi di bawah 3 bulan atau di atas 6 tahun. Biasanya terjadi pada umur 4-18 bulan.

Gambar : Sakit kepala, sakit leher, sakit di punggung

Diagnosis

Dalam mendiagnosis penyakit ini, dapat dipergunakan cairan serebrospinal, sputum, dan cairan telinga sebagai bahah pemeriksaan. Dari bahan ini dibuat preparat Gram, dan ditanam pada perbenihan agar coklat yang dieramkan dalam suasana CO2 10%. Ada 3 cara untuk mendiagnosanya, yaitu dengan Staphylococcus streak technique, untuk mengasingkan H. influenzae, terutama dari bahan-bahan yang tidak terkontaminasi dengan kuman-kuman lain seperti cairan serebrospinal dan darah. Cara lain adalah dengan reaksi Quellung yang khas sangat membantu diagnosis, kecuali untuk kuman-kuman tak bersimpai. Sedangkan untuk menegakkan diagnosis meningitis, digunakan deteksi antigen polisakarida simpai di dalam cairan tubuh.

Pengobatan

Pemilihan antibiotika yang akan digunakan dapat ditentukan dengan tes kepekaan secara in vitro. Kebanyakan H. influenzae peka terhadap ampisilin, khloramfenikol, tetrasiklin, sulfonamida dan kotrimoksasol, dan terapi dengan salah satu atau kombinasi obat-obat ini, namun kepekaan kumannya sendiri dan hasil suatu terapi tidak dapat diperkirakan. Terapi untuk anak atau bayi yang terinfeksi meningitis karena Hbi dapat diberikan dexamethasone atau campuran dari cefotaxime sodium/ceftriaxone sodium/ampicillin dengan chloramphenicol.

Sementara untuk pencegahannya, dapat digunakan vaksin khas polisakarida simpai (vaksin PRP). Disarankan juga untuk menjaga pola hidup bersih di daerah yang padat penduduk.

5.Mycoplasma pneumoniae

Klasifikasi

Kingdom  : Bacteria

Divisi       : Firmicutes

Kelas        : Mollicutes

Ordo         : Mycoplasmatales

Famili       : Mycoplasmataceae

Genus       : Mycoplasma

Spesies     : Mycoplasma pneumonia

Mycoplasma pneumoniae merupakan salah satu penyebab infeksi saluran nafas akut (ISNA) pada anak-anak dan dewasa muda. Pada awalnya penyakit ini dikenal dengan Pneumonia Atypical Primer (PAP) karena gambarannya tidak menyerupai bakteri tipikal dari pneumonia, gambaran radiologis paru tidak spesifik dan angka kematian yang rendah. Tetapi kemudian ditemukan kesamaan antara bakteri ini dengan bakteri penyebab pneuropneumonia pada ternak oleh Eaton dkk. Maka sejak saat itu disebut Eaton egent atau Pleuropneumonia-Like Organism (PPLO).

Mycoplasma dapat tumbuh atau berkembang biak dalam perbenihan tanpa sel, dan pertumbuhannya dihambat oleh antibodi spesifik. Kuman ini mempunyai afinitas selektif untuk sel epitel saluran nafas misalnya bronkus, bronkiolus, dan alveolus yang akan menghasilkan hidrogen peroksida (H2O2). Pada umumnya bersifat anaerob fakultatif dengan suhu pertumbuhan optimal 36-37° C dan pH optimum 7. Untuk pertumbuhannya diperlukan kolesterol dan asam lemak rantai panjang, sedangkan sumber energi utama didapatkan dari glukosa atau arginin.

Koloni Kuman

Mikroorganisme ini mempunyai struktur yang sangat primitif dan merupakan prokariota yang paling kecil yang masih dapat melakukan self replication. Bersifat sangat pleomorf karena spesies ini tidak memiliki dinding sel peptidoglikan, ia memiliki tiga lapis membran sel yang menggabungkan senyawa sterol, mirip dengan sel-sel eukariotik. Mycoplasma pneumoniae merupakan bakteri gram negatif dengan ukuran panjang 1 mm – 2 μm dan lebar 0,1 mm – 0,2 μm, berbentuk bundar agak datar, pinggirnya bening (transculent), bagian tengah keruh dan granuler. Kuman tumbuh jauh ke dalam agar dan membentuk penampilan fried egg. Permukaan koloni dapat mengadsorpsi sel darah merah, membentuk zona hemolisis. Pertumbuhannya sangat lambat antara 5-10 hari atau lebih.

Epidemiologi

Infeksi M. Pneumoniae dapat dijumpai di seluruh dunia dan bersifat endemik. Prevalensi kasus yang paling banyak dijumpai biasanya pada musim panas sampai ke awal musim gugur yang dapat berlangsung satu sampai dua tahun. Infeksi menyebar luas dari satu orang ke orang lain dengan percikan air liur (droplet) sewaktu batuk. Itulah sebabnya infeksi ini lebih mudah tersebar pada populasi penduduk yang padat.

Patologi

Baru sedikit informasi yang diperoleh mengenai gambaran histopatologi infeksi M. Pneumoniae ini pada manusia, penyakit ini jarang menyebabkan kematian. Pada beberapa kematian yang pernah dilaporkan, ditemui gambaran interstitial pneumonia dan bronkiolitis yaitu penebalan dinding bronkus karena edeme, penyempitan pembuluh darah, dan infiltrat dari mononuklear.

Gambaran Klinis

Gambaran klinis dari Mycoplasma pneumoniae sangat bervariasi dari yang ringan hingga berat, bahkan ada yang dapat menimbulkan kematian, tetapi hal ini jarang ditemukan. Demam dan batuk merupakan manifestasi klinik yang biasanya terjadi, ditambah infeksi saluran pernapasan atas disertai myringitis, faringitis, bronkitis, atau kombinasi ketiganya. Namun terkadang juga sering terjadi manifestasi klinis lain, misalnya infeksi telinga kira-kira 20% terdiri dari otitis media, otitis externa dan bullous myringitis.

Komplikasi pulmonal yang paling sering terjadi adalah Pleural effusi ringan, sedangkan komplikasi berat menyebabkan bronkiolitis obliterans dan respiratori distress sindrom pada orang dewasa yang dapat menyebabkan kematian. Komplikasi gastrointestinal jarang terjadi, gejala ringan berupa diare, mual, muntah, dan anoreksia. Pada darah, hemolitik anemi dapat terjadi pada pasien yang memiliki titer Aglutinin dingin yang sangat tinggi, penurunan angka hematrokrit hingga 50% juga dapat terjadi pada minggu ke 2-3 perjalanan penyakit. Komplikasi pada kulit jarang terjadi dan bersifat sementara, terlihat rash yang bervariasi dari makular, vesikular, dan eritema multiforme mayor (Stevens-Johnson Symdrome)

   

Gambar : Infeksi Mycoplasma pneumoniae pada kulit

Diagnosis

Secara umum, terdapat beberapa cara untuk mendiagnosis M. Pneumoniae pada pasien terinfeksi, namun hanya beberapa cara yang efektif. Gambaran radiologik paru dapat digunakan, tetapi tidak dapat digunakan sebagai patokan karena tidak ada kelainan yang patognomomik dan cepat membaik dalam waktu yang relatif singkat kurang dari seminggu. Pemeriksaan laboratorium dengan menghitung leukosit, namun biasanya leukosit penderita berada pada tingkat normal atau sedikit meninggi. Kemudian dapat pula dengan kultur dari sputum atau hapusan tenggorokan, namun diperlukan waktu 2-3 minggu hingga terdapat pertumbuhan kuman. Lalu dengan pemeriksaan serologik yang umum digunakan saat ini adalah pemeriksaan terhadap antibodi IgM spesifik, antibodi IgG spesifik, antibodi fluoresense, inhibisi pertumbuhan, fiksasi komplemen, dan Aglutinin dingin. Metode yang dipakai untuk pemeriksaan serologik adalah Efisa (Enzyme linked immunosorbent assay) atau EIA (Enzyme Immuno Assay). Namun dari semuanya, diagnosis M. Pneumoniae cepat dapat dilakukan dengan DNA probe test yang mempunyai sensitivitas 76% dan sensitivitas 91,7% dibandingkan dengan kultur.

Pengobatan

  1. Antibiotika

M. Pneumoniae secara invitro memperlihatkan sensitivitas terhadap Eritromisin dan Tetrasiklin sebagai obat pilihan untuk infeksi M. Pneumoniae. Pada anak dengan usia kurang dari 10 tahun, obat pilihan adalah Eritromisin, sedangkan Tetrasiklin tidak dianjurkan karena memiliki efek samping pada anak. Rincian dosisnya adalah sebagai berikut.

  • Dewasa dengan berat badan ≥ 26 kg :
  • Tetrasiklin 1000 mg/hari dibagi 4 dosis
  • Erotromisin 1500 mg/hari dibagi 4 dosis
  • Anak-anak dengan berat badan ≤ 25 kg :
  • Tetrasiklin 25 mg/kg BB/hari dalam 4 dosis
  • Eritromisin 30-50 mg/kg BB/hari
  • Diberi selama 2-3 minggu

Pemberian obat di atas dalam jangka waktu pendek menunjukkan hasil yang baik, tapi mikroorganisme ini bisa tidak segera hilang dari sputum atau hapusan tenggorokan, sehingga dapat mempengaruhi fungsi paru di kemudian hari. Obat baru yang sekarang ini banyak dipakai adalah Roxytromycin, yang ternyata cukup efektif terhadap M. Pneumoniae dengan sedikit efek samping. Dosis yang diberikan 5-10 mg/kg BB/hari dibagi dalam 2 dosis secara oral, diberikan selama 7-14 hari.

  1. Simtomatik, yaitu :
    1. Istirahat
    2. Analgetik atau Antipiretik
    3. Antitussive
    4. Asupan cairan

Pencegahan

Tidak ada cara spesifik untuk mencegah pertumbuhan penyakit ini. Cara yang dapat ditempuh hanya berupa menjaga kebersihan diri, terutama kebiasaan mencuci tangan, serta menghindari kontak langsung dengan pasien yang terinfeksi.

6. Corynebacterium diphtheriae

Klasifikasi
Kingdom         : Bakteri
Filum               : Actinobacteria
Kelas               : Actinobacteria
Order               : Actinomycetales
Keluarga          : Corynebacteriaceae
Genus              : Corynebacterium
Spesies            : Corynebacterium diphtheriae

Corynebacterium diphtheriae adalah bakteri patogen yang menyebabkan difteri berupa infeksi akut pada saluran pernapasan bagian atas. Ia juga dikenal sebagai basil Klebs-Löffler, karena ditemukan pada tahun 1884 oleh bakteriolog Jerman, Edwin Klebs (1834-1912) dan Friedrich Löffler (1852-1915).

Ada tiga strain C. diphtheriae yang berbeda yang dibedakan oleh tingkat keparahan penyakit mereka yang disebabkan  pada manusia yaitu gravis, intermedius, dan mitis. Ketiga subspesies sedikit berbeda dalam morfologi koloni dan sifat-sifat biokimia seperti kemampuan metabolisme nutrisi tertentu. Perbedaan virulensi dari tiga strain dapat dikaitkan dengan kemampuan relatif mereka untuk memproduksi toksin difteri (baik kualitas dan kuantitas), dan tingkat pertumbuhan masing-masing. Strain gravis memiliki waktu generasi (in vitro) dari 60 menit; strain intermedius memiliki waktu generasi dari sekitar 100 menit, dan mitis memiliki waktu generasi dari sekitar 180 menit.. Dalam tenggorokan (in vivo), tingkat pertumbuhan yang lebih cepat memungkinkan organisme untuk menguras pasokan besi lokal lebih cepat dalam menyerang jaringan.

Morfologi dan Sifat Biakan

Kuman difteri berbentuk batang ramping berukuran 1,5-5 um x 0,5-1 um, tidak berspora, tidak bergerak, termasuk Gram positif, dan tidak tahan asam. C. Diphtheriae bersifat anaerob fakultatif, namun pertumbuhan maksimal diperoleh pada suasana aerob. Pembiakan kuman dapat dilakukan dengan perbenihan Pai, perbenihan serum Loeffler atau perbenihan agar darah. Pada perbenihan-perbenihan ini, strain mitis bersifat hemolitik, sedangkan gravis dan intermedius tidak. Dibanding dengan kuman lain yang tidak berspora, C. Diphtheriae lebih tahan terhadap pengaruh cahaya, pengeringan dan pembekuan. Namun, kuman ini mudah dimatikan oleh desinfektan.

Epidemiologi

Difteri terdapat di seluruh dunia dan sering terdapat dalam bentuk wabah. Penyakit ini terutama menyerang anak umur 1-9 tahun. Difteri mudah menular dan menyebar melalui kontak langsung secara droplet. Banyak spesies Corynebacteria dapat diisolasi dari berbagai tempat seperti tanah, air, darah, dan kulit manusia. Strain patogenik dari Corynebacteria dapat menginfeksi tanaman, hewan, atau manusia. Namun hanya  manusia yang diketahui sebagai reservoir penting infeksi penyakit ini. Bakteri ini umumnya ditemukan di daerah beriklim sedang atau di iklim tropis, tetapi juga dapat ditemukan di bagian lain dunia.

Penentu Patogenitas

Patogenisitas Corynebacterium diphtheriae mencakup dua fenomena yang berbeda, yaitu

1. Invasi jaringan lokal dari tenggorokan, yang membutuhkan kolonisasi dan proliferasi bakteri berikutnya. Sedikit yang diketahui tentang mekanisme kepatuhan terhadap difteri C. diphtheriae tapi bakteri menghasilkan beberapa jenis pili. Toksin difteri juga mungkin terlibat dalam kolonisasi tenggorokan.

Gambar : infeksi tenggorokan

2. Toxigenesis: produksi toksin bakteri. Toksin difteri menyebabkan kematian sel eukariotik dan jaringan oleh inhibisi sintesis protein dalam sel. Meskipun toksin bertanggung jawab atas gejala-gejala penyakit mematikan, virulensi dari C. diphtheriae tidak dapat dikaitkan dengan toxigenesis saja, sejak fase invasif mendahului toxigenesis, sudah mulai tampak perbedaan. Namun, belum dipastikan bahwa toksin difteri memainkan peran penting dalam proses penjajahan karena efek jangka pendek di lokasi kolonisasi.  

Patogenesis

Organisme ini menghasilkan toksin yang menghambat sintesis protein seluler dan bertanggung jawab atas kerusakan jaringan lokal dan pembentukan membran. Toksin yang dihasilkan di lokasi membran diserap ke dalam aliran darah dan didistribusikan ke jaringan tubuh. Toksin yang bertanggung jawab atas komplikasi utama dari miokarditis dan neuritis dan juga dapat menyebabkan rendahnya jumlah trombosit (trombositopenia) dan protein dalam urin (proteinuria).

Penyakit klinis terkait dengan jenis non-toksin umumnya lebih ringan. Sementara kasus yang parah jarang dilaporkan, sebenarnya ini mungkin disebabkan oleh strain toksigen yang tidak terdeteksi karena contoh koloni tidak memadai.

Gambaran klinis

Masa inkubasi difteri adalah 2-5 hari (jangkauan, 1-10 hari). Untuk tujuan klinis, akan lebih mudah untuk mengklasifikasikan difteri menjadi beberapa manifestasi, tergantung pada tempat penyakit.

1)      Anterior nasal difteri : Biasanya ditandai dengan keluarnya cairan hidung mukopurulen (berisi baik lendir dan nanah) yang mungkin darah menjadi kebiruan. Penyakit ini cukup ringan karena penyerapan sistemik toksin di lokasi ini, dan dapat diakhiri dengan cepat oleh antitoksin dan terapi antibiotik.

                                               Gambar : keluaran cairan dari lubang hidung

2)      Pharyngeal dan difteri tonsillar : Tempat yang paling umum adalah infeksi faring dan tonsil. Awal gejala termasuk malaise, sakit tenggorokan, anoreksia, dan demam yang tidak terlalu tinggi. Pasien bisa sembuh jika toksin diserap. Komplikasi jika pucat, denyut nadi cepat, pingsan, koma, dan mungkin mati dalam jangka waktu 6 sampai 10 hari. Pasien dengan penyakit yang parah dapat ditandai terjadinya edema pada daerah submandibular dan leher anterior bersama dengan limfadenopati.

                                                                              Gambar : Anoreksia

3)      Difteri laring : Difteri laring dapat berupa perpanjangan bentuk faring. Gejala termasuk demam, suara serak, dan batuk menggonggong. membran dapat menyebabkan obstruksi jalan napas, koma, dan kematian.

Gambar : Batuk Menggonggong

4)      Difteri kulit : Difteri kulit cukup umum di daerah tropis. Infeksi kulit dapat terlihat oleh ruam atau ulkus dengan batas tepi dan membran yang jelas. Situs lain keterlibatan termasuk selaput lendir dari konjungtiva dan daerah vulvo-vagina, serta kanal auditori eksternal.

Gambar : Defteri kulit

Kebanyakan komplikasi difteri, termasuk kematian, yang disebabkan oleh pengaruh toksin terkait dengan perluasan penyakit lokal. Komplikasi yang paling sering adalah miokarditis difteri dan neuritis. Miokarditis berupa irama jantung yang tidak normal dan dapat menyebabkan gagal jantung. Jika miokarditis terjadi pada bagian awal, sering berakibat fatal. Neuritis paling sering mempengaruhi saraf motorik. Kelumpuhan dari jaringan lunak, otot mata, tungkai, dan kelumpuhan diafragma dapat terjadi pada minggu ketiga atau setelah minggu kelima penyakit.

Komplikasi lain termasuk otitis media dan insufisiensi pernafasan karena obstruksi jalan napas, terutama pada bayi. Tingkat fatalitas kasus keseluruhan untuk difteri adalah 5% -10%, dengan tingkat kematian lebih tinggi (hingga 20%). Namun, tingkat fatalitas kasus untuk difteri telah berubah sangat sedikit selama 50 tahun terakhir.

Diagnosis

Diagnosis klinik difteri tidak selalu mudah ditegakkan oleh klinikus-klinikus dan sering terjadi salah diagnosis. Hal ini terjadi karena strain C. Diphtheriae baik yang toksigenik maupun nontoksigenik sulit dibedakan, lagipula spesies Corynebacterium yang lain pun secara morfologik mungkin serupa. Karena itu bila pada pemeriksaan mikroskopik ditemukan kuman khas difteri, maka hasil presumtif adalah: ditemukan kuman-kuman tersangka difteri. Hal ini menunjukkan pentingnya dilakukan diagnosis laboratorium secara mudah, cepat, dan dengan hasil yang dipercaya untuk membantu klinikus. Walaipun demikian, diagnosis laboratorium harus dianggap sebagai penunjang bukan pengganti diagnosis klinik agar penanganan penyakit dapat cepat dilakukan. Hapusan tenggorok atau bahan pemeriksaan lainnya harus diambil sebelum pemberian obat antimikroba, dan harus segera dikirim ke laboratorium.

Pengobatan

Selain antitoksin, umumnya diberi Penisilin atau antibiotik lain seperti Tetrasiklin atau Eritromisin yang bermaksud untuk mencegah infeksi sekunder (Streptococcus) dan pengobatan bagi carrier penyakit ini. Pengobatan dengan eritromisin secara oral atau melalui suntikan (40 mg / kg / hari, maksimum, 2 gram / hari) selama 14 hari, atau penisilin prokain G harian, intramuskular (300.000 U / hari untuk orang dengan berat 10 kg atau kurang dan 600.000 U / sehari bagi mereka yang berat lebih dari 10 kg) selama 14 hari.Antitoksin difteri diproduksi dari kuda, yang pertama kali digunakan di Amerika Serikat pada tahun 1891. Pengobatan difteri dilakukan dengan pemberian antitoksin yang tepat jumlahnya dan juga cepat. Antitoksin dapat diberikan setelah diagnosis presumtif keluar, tanpa perlu menunggu diagnosis laboratorium. Hal ini dilakukan karena toksin dapat dengan cepat terikat pada sel jaringan yang peka, dan sifatnya irreversibel karena ikatan tidak dapat dinetralkan kembali. Jadi penggunaan antitoksin bertujuan untuk mencegah terjadinya ikatan lebih lanjut dari toksin dalam sel jaringan yang utuh dan akan mencegah perkembangan penyakit.

Pencegahan

Pencegahan infeksi bakteri ini dapat dilakukan dengan menjaga kebersihan diri dan tidak melakukan kontak langsung dengan pasien terinfeksi. Selain itu, imunisasi aktif juga perlu dilakukan. Imunisasi pertama dilakukan pada bayi berusia 2-3 bulan dengan pemberian 2 dosis APT (Alum Precipitated Toxoid) dikombinasikan dengan toksoid tetanus dan vaksin pertusis. Dosis kedua diberikan pada saat anak akan bersekolah.Imunisasi pasif dilakukan dengan  menggunakan antitoksin berkekuatan 1000-3000 unit pada orang tidak kebal yang sering berhubungan dengan kuman yang virulen, namun penggunaannya harus dibatasai pada keadaan yang memang sanagt gawat. Tingkat kekebalan seseorang terhadap penyakit difteri juga dapat diketahui dengan melakukan reaksi Schick.

7.Bordetella pertussis

Klasifikasi

Kingdom         : Eubacterium

Filum               : Coccobacillus

Kelas               : Bacillus

Ordo                : Coccobacillus

Famili              : Alcaligenaceae

Genus              : Bordetella

Spesies            : Bordetella pertussis

Penyakit pertusis atau batuk rejan (whooping chough) atau batuk seratus hari merupakan penyakit akut saluran pernapasan yang ditandai dengan batuk paroksismal. Di dunia terjadi sekitar 30 sampai 50 juta kasus per tahun, dan menyebabkan kematian pada 300.000 kasus (data dari WHO). Penyakit ini biasanya terjadi pada anak berusia di bawah 1 tahun. 90 persen kasus ini terjadi di negara berkembang dan merupakan penyakit yang menular.

Penyakit ini disebabkan oleh Bordetella pertussis yang untuk pertama kalinya diasingkan oleh Bordet dan Gengou pada tahun 1906. Penyakit-penyakit serupa berhasil ditemukan kemudian, yaitu yang disebabkan oleh Bordetella parapertussis dan Bordetella bronchiseptica. Standarisasi waksin serta penggunaannya secara luas sangat menurunkan morbiditas dan mortalitas penyakit ini. Bakteri ini mengandung beberapa komponen yaitu Peitusis Toxin (PT), Filamentous Hemagglutinin (FHA), Aglutinogen, endotoksin, dan protein lainnya.

Morfologi dan Fisiologi

Boredetella pertussis berbentuk coccobacillus kecil-kecil, terdapat sendiri-sendiri, berpasangan, atau membentuk kelompok-kelompok kecil. Pada isolasi primer, bentuk kuman biasanya uniform, tetapi setelah subkultur dapat bersifat pleomorfik.Bentuk koloni pada biakan agar yaitu smooth, cembung, mengkilap, dan tembus cahaya. Bentuk-bentuk filament dan batang-batang tebal umum dijumpai. Simpai dibentuk tapi hanya dapat dilihat dengan pewarnaan khusus, dan tidak dengan penggabungan simpai. Kuman ini hidup aerob, tidak membentuk H2S, indol serta asetilmetilkarbinol. Bakteri ini merupakan gram negative dan dengan pewarnaan toluidin biru dapat terlihat granula bipolar metakromatik.

Pada Bordetella pertussis ditemukan dua macam toksin yaitu

  • Endotoksin yang sifatnya termostabil dan terdapat dalam dinding sel kuman. Sifat endotoksin ini mirip dengan sifat endotoksin-endotoksin yang dihasilkan oleh kuman negative gram lainnya.
  • Protein yang bersifat termolabil dan dermonekrotik. Toksin ini dibentuk di dalam protoplasma dan dapat dilepaskan dari sel dengan jalan memecah sel tersebut atau dengan jalan ekstraksi memakai NaCl.

Baik endotoksin maupun toksin yang termolabil tersbeut tidak dapat memancing timbulnya proteksi terhadap infeksi Bordetella pertussis. Peranan yang pasti daripada kedua toksin ini dalam pathogenesis pertusis belum diketahui.

Berbeda dengan spesies-spesies Hemophilus, kuman Bordetella dapat tumbuh tanpa adanya hemin (factor X) dan koenzim I (factor V). Pembiakan dilakukan pada perbenihan Bordet-gengou, dimana kuman-kuman ini tumbuh dengan membentuk koloni yang bersifat smooth, cembung, mengkilat, dan tembus cahaya. Kuman ini membentuk zona hemolisis. Sifat-sifat ini dapat ebrubah tergantung lingkungan dimana kuman ini dibiakkan, yang diikuti oleh perubahan-perubahan sifat antigenic serta virulensinya.

Struktur antigen

Proteksi terhadap infeksi oleh Bordetella pertussis merupakan respon imunoloik terhadap antigen (antigen-antigen) kuman. Sifat antigen protektif kuman ini tidak diketahui. Walaupun demikian, penelitian serologic yang ekstensif telah berhasil menemukan antigen-antigen yang penting. Diketahui adanya antigen permukaan O yang termostabil pada smooth strains dan rough strains Bordetella pertussis. Antigen O ini berupa protein, mudah diekstraksi dari sel dan terdapat di dalam cairan supernatant biakan kuman.

Antigen-antigen serta factor-faktor lainnya seperti HLT (heat-labile toxin), lipopolisakarida (endotoksin), HSF (histamine-sensitizing factor), LPF (lymphocytosis-promoting factor), MPF (mouse-protective factor), hemaglutinin dan agaknya juga IAP (islet-activating protein) adalah sangat erat kaitannya dengan  infeksi, penyakit dan kekebalan.

Epidemiologi

Penyakit pertusis tersebar di seluruh dunia dan mudah sekali menular. Manusia merupakan satu-satunya sumber Bordetella pertussis, dan penyebaran penyakit ini hampir selalu disebabkan oleh orang-orang dengan infeksi aktif. Banyak kasus terjadi pada anak-anak di bawah 5 tahun, sebagian besar meninggal pada usia 1 tahun.

Penularan

Pertusis menular melalui droplet batuk dari pasien yg terkena penyakit ini dan kemudian terhirup oleh orang sehat yg tidak mempunyai kekebalan tubuh, antibiotik dapat diberikan untuk mengurangi terjadinya infeksi bakterial yg mengikuti dan mengurangi kemungkinan memberatnya penyakit ini (sampai pada stadium catarrhal) sesudah stadium catarrhal antibiotik tetap diberikan untuk mengurangi penyebaran penyakit ini, antibiotik juga diberikan pada orang yg kontak dengan penderita, diharapkan dengan pemberian seperti ini akan mengurangi terjadinya penularan pada orang sehat tersebut.

Patogenesis

Setelah menghisap droplet yang terinfeksi, kuman akan berkembang biak di dalam saluran pernafasan. Gejala sakit hampir selalu timbul dalam 10 hari setelah kontak, meskipun masa inkubasi bervariasi antara 5-21 hari. Penyakit ini terbagi dalam 3 stadium.

  • Stadium prodromal (kataral) berlangsung selama 1-2 minggu. Selama stadium ini, penderita hanya menunjukkan gejala-gejala infeksi saluran pernafasan bagian atas yang ringan seerti bersin, keluarnya cairan dari hidung, batuk dan kadang-kadang konjungtivitis. Pemeriksaan fisik tidak memberikan hasil yang menentukan. Masa ini merupakan masa perkebmangbiakan kuman di dalam epitel pernafasan.
  • Stadium kedua biasanya berlangsung selama 1-6 minggu dan ditandai dengan peningkatan batuk paroksismal. Suatu batuk paroksismal yang khas adalah dimana dalam jangka waktu 15-20 detik terjadi 5-20 batuk beruntun biasanya diakhiri dengan keluarnya lender/muntah serta tidak ada kesempatan untuk bernafas diantara batuk-batuk tersebut. Tarikan nafas setelah batuk biasanya menimbulkan bunyi yang keras.
  • Stadium ketiga berupa stadium konvalessen. Batuk dapat berlangsung sampai beberapa bulan setelah permulaans akit. Beratnya penyakit bervariasi.

Sindrom respiratorik ringan yang disebabkan oleh Bordetella pertussis tidak mungkin dikenal atas dasar klinik saja. Kurang lebih 20% infeksi pertusis diperkirakan sebagai penyakit-penyakit atipik dan penderita-penderita ini berbahaya bagi orang lain. Komplikasi yg dapat mengikuti keadaan ini adalah pneumonia, encephalitis, hipertensi pada paru, dan infeksi bakterial yg mengikuti.

Diagnosis laboratorium

Diagnosis yang pasti tergantung pada diasingkannya Bordetella pertussis dari penderita. Hasil isolasi tertinggi diperoleh pada stadium kataral, dan kuman pertusis biasanya tidak dapat ditemukan lagi setelah 4 minggu pertama sakit. Bahan pemeriksaan berupa usapan nasofaring penderita atau dengan menampung batuk secara langsung pada perbenihan. Isolasi Bordetella pertussis dari bahan klinik sangat bergantung pada transportasi dan pengolahan bahan tersbeut.

Bila diperlukan lebih dari 2 jam sebelum bahan tersebut sampai di laboratorium, sebaiknya bahan pemeriksaan tadi ditanam pada perbenihan Stuart (dimodifikasikan). Penambahan penicillin 0,25-0,5 unit/ml di dalam perbenihan kedua adalah berguna untuk menghambat pertumbuhan kuman positif gram saluran pernafasan, tanpa mengurangi pertumbuhan kuman pertusis.

Selain reaksi-reaksi biokimiawi, identifikasi Bordetella pertussis secara serologic akan memastikan isolasi tersebut. Pewarnaan antibody fluoresensi (AF) telah dipakai untuk mengidentifikasi Bordetella pertussis pada preparat langsung hapusan nasofaring dan untuk mengidentifikasi kuman-kuman yang tumbuh pada perbenihan Bordet-gengou. Cara AF ini tidak dapat menggantikan isolasi kuman, namun dapat mengidentifikasi kuman secara lebih cepat.

Pengobatan dan pencegahan

Pencegahan dilakukan dengan cara mencegah kontak langsung dengan penderita dan dengan imunisasi. Dilakukan vaksinasi aktif pada bayi. Setiap bayi sebaiknya menerima 3 suntikan dari vaksin pertusis selama 1 tahun pertama diikuti serum tambahan sampai jumlah keseluruhan.

Pada saat ini, eritromisin merupakan obat pilihan. Pemberian antibiotika ini akan menyingkirkan kuman-kuman tersebut dari nasofaring dan karenanya dapat mempersingkat masa penularan/penyebaran kuman.

Selain eritromisin, tetrasiklin, kloramfenikol dan ampisilin juga bermanfaat. Cara pencegahan terbaik terhadap pertusis adalah dengan imunisasi dan dengan mencegah kontak langsung dengan penderita. Proteksi bayi terhadap pertusis dengan vaksinasi aktif adalah penting karena komplikasi-komplikasi berat serta morbiditas tertinggi terdapat pada usian ini.

Antibodi yang masuk melalui plasenta tidak cukup memberikan proteksi. Vaksin yang dipergunakan biasanya merupakan kombinasi toksoid difteri dan tetanus dengan vaksin pertusis (vaksin DPT). Imunitas yang diperoleh baik karena infeksi alamiah maupun karena imunisasi aktif, tidak berlangsung untuk seumur hidup.

Jika penyakit berat, penderita biasanya dirawat di rumah sakit. Mereka ditempatkan di dalam kamar yang tenang dan tidak terlalu terang. Keributan bisa merangsang serangan batuk. Bisa pula dilakukan pengisapan lender dari tenggorokan. Pada kondisi yang berat, oksigen diberikan langsung ke paru-paru melalui selang yang dimasukkan ke trakea. Untuk menggantikan cairan yang hilang karena muntah, dan bayi biasanya tidak dapat makan karena batuk, maka diberikan cairan melalui infus. Gizi yang baik sangat penting dan sebaiknya makanan diberikan dalam porsi kecil namun sering.

Prognosis

Sebagian besar penderita mengalami pemulihan total, meskipun berlangsung lambat. Sekitar 1-2% anak yang berusia dibawah 1 tahun meninggal. Kematian terjadi karena berkurangnya oksigen ke otak (ensefalopati anoksia) dan bronkopneumonia.

8. Legionella pneumophila

Klasifikasi

Kingdom         : Bacteria

Filum               : Proteobacteria

Kelas               : Gamma proteobacteria

Ordo                : Legionellales

Famili              : Legionellaceae

Genus              : Legionella

Spesies            : Legionella pneumophila

Legionella adalah bakteri tipis, pleomorfik, berflagel dan merupakan bakteri gram negative. Bakteri yang berasal dari genus legionella ini merupakan bakteri yang menyebabkan penyakit  legionellosis. Legionellosis adalah suatu penyakit infeksi bakteri akut yang bersifat new emerging disease. Secara keseluruhan baru dikenal 20 spesies.

Bakteri ini pertama kali diidentifikasi pada tahun 1976, namun kasus-kasus sebelumnya telah dikonfirmasikan sejak tahun 1947. Pertama kali wabah legionellosis ini terjadi di Philadelphia, AS pada tahun 1976 dengan jumlah kasus mencapai 182 dan dengan jumlah kematian mencapai 29 orang. Di Indonesia sendiri kasus ini ada di sejumlah tempat antara lain seperti di Bali (1996), di Karawaci, Tangerang (1999) dan di sejumlah kota lainnya.

Karakteristik

Legionella termasuk bakteri gram negative batang yang tidak meragi D-glukosa, dan juga tidak meragi nitrat menjadi nitrit. Koloni bakteri ini hidup subur menempel di pipa-pipa karet dan plastic yang berlumut dan tahan kaporit dengan konsentrasi klorin 26 mg/l. legionella dapat hidup pada suhu antara 5,7oC – 63oC dan tumbuh subur pada suhu 30oC – 45oC.

Bakteri ini termasuk bakteri aerobic dan tidak mampu menghidrolisis gelatin ataupun memproduksi urease. Bakteri ini juga termausk bakteri yang nonfermentatif. Bakteri ini juga tidak berpigmen dan tidak berautofluoresensi. Selain itu bakteri ini juga merupakan enzim yang mengkatalis proses redoks atau bisa juga disebut sebagai katalase positif dan menghasilkan beta-laktamase.

Epidemiologi

Bakteri ini ditemukan secara alami di alam, biasanya di air. Bakteri ini tumbuh subur di air hangat, seperti di kolam air panas, menara pendingin, atau bagian dari system pendingin bangunan besar. Bakteri ini ditemukan di sungai dan juga kolam, keran air panas dan dingin, tangki air panas, dan juga tanah di lokasi penggalian.

Patogenesis

Legionellosis yang disebabkan oleh Legionella pneumophila bisa menjadi penyakit pernafasan ringan atau dapat cukup parah untuk dapat menyebabkan kematian. Penyakit ini bisa menjadi sangat serius dan menyebabkan kematian dari 5%-30% kasus yang ada. Dari 10%-40% orang dewasa yang sehat memiliki antibody menunjukkan paparan sebelumnya terhadap organism, namun hanya sebagian kecil yang memiliki riwayat pneumonia sebelumnya.

Pada manusia, legionella pneumophila menyerang dan replikasi di dalam bentuk makrofag. Internalisasi dari bakteri dapat ditingkatkan dengan adanya antibody dan system komplemen namun tidak mutlak diperlukan. Terdapat sebuah pseudopod koil di sekitar bakteri dalam bentuk fagositosis yang unik. Begitu diinternalisasi, bakteri mengelilingi diri dalam membrane vakuola yang terikat yang tidak bereaksidengan lisosom yang akan menurunkan bakteri. Dalam kompartemen yang terlindungi ini, bakteri akan berkembang biak. Bakteri menggunakan system sekresi tipe IV B yang dikenal sebagai ICM/Dot untuk menyuntikkan protein efektor ke dalam host. Efektor ini terlihat dalam meningkatkan kemampuan bakteri untuk bertahan hidup dalam sel inang. Tingkat bertahan hidup ditingkatkan oleh protein efektor (Ank protein) karena mereka mengganggu fusi dari legionella yang mengandung vakuola dengan degradasi inang endosom

Penularan

Penyakit ini tampaknya menyebar melalui udara dari tanah atau sumber air. Semua penelitian hingga saat ini telah menunjukkan bahwa penularan dari orang ke orang tidak terjadi. Orang dari segala usia dapat terkena penyakit ini. Namun yang biasanya terkena adalah orang-orang dengan usia lanjut ( diatas 65 tahun) ataupun orang-orang dengan system imun yang lemah terhadap penyakit. Terkadang perokok, orang-orang yang mengalami penyakit paru yang kronis (misal emfisema), dan orang-orang yang menggunakan obat penekan system kekebalan (misal setelah operasi transplantasi) juga mempunyai resiko lebih tinggi terkena penyakit ini. Penyakit ini jarang terjadi pada orang yang sehat.

Wabah ini terjadi ketika dua atau lebih orang menjadi sakit di tempat yang sama pada waktu yang sama, seperti pasien di rumah sakit terkena penyakit ini. Bangunan Rumah Sakit memiliki sistem air yang kompleks, dan banyak orang di rumah sakit telah memiliki penyakit yang meningkatkan resiko mereka untuk infeksi legionella. Penularan pada manusia antara lain melalui aerosol di udara, atau minum air yang mengandung Legionella. Selain itu dapat pula terjadi melalui aspirasi air yang terkontaminasi, inokulasi langsung melalui peralatan pernafasan atau melalui pengompresan luka dengan air yang terkontaminasi. Contoh lain adalah dengan menghirup uap dari sauna di spa atau hotel yang tidak dibersihkan secara seksama dengan desinfektan.

Gejala

Masa inkubasi penyakit ini berkisar antara 1 sampai 10 hari, namun biasanya berkisar antara 5 sampai 6 hari. Penyakit ini dapat memiliki gejala seperti bentuk lain dari pneumonia sehingga sulit untuk mendiagnosis pada awalnya. Tanda-tanda penyakit ini bisa mencakup demam tinggi, menggigil dan batuk. Bahkan pada beberapa orang ada yang menderita nyeri otot dan sakit kepala.

Infeksi ringan yang disebabkan oleh sejenis bakteri legionella disebut Pontiac Fever. Gejala Demam Pontiac biasanya berlangsung selama 2 sampai 5 hari dan bisa juga menyertakan demam, sakit kepala, dan nyeri otot, namun tidak ada pneumonia. Gejala pergi sendiri tanpa pengobatan dan tanpa menyebabkan masalah lebih lanjut.

Gambar : Sakit kepala dan nyeri otot.

Diagnosis

Legionellosis sering menyebabkan gejala yang mirip dengan yang disebabkan oleh organisme lain, termasuk jenis virus influenza dan bakteri pneumonia lainnya. Selain itu tes laboratorium khusus diperlukan untuk mengkonfirmasi diagnosis tidak selalu diminta. Diagnosis tergantung pada tes laboratorium yang sangat khusus yang melibatkan dahak pasien atau mendeteksi organism dalam urin. Tes laboratorium rutin tidak akan mengidentifikasi bakteri Legionella.

Sedangkan sera (serum) telah digunakan baik untuk studi aglutinasi serta untuk mendeteksi langsung dari bakteri dalam jaringan dengan menggunakan antibody fluorescent-labelled. Antibody spesifik pada pasien juga dapat ditentukan dengan uji antibody fluoresen tidak langsung. ELISA dan ter mikroaglutinasi juga telah berhasil ditetapkan.

Pencegahan dan Pengobatan

Pengobatan legionellosis dengan menggunakan antibiotic seperti eritromisin, levaquin atau azitromisin bisa dikatakan cukup efektif dalam menangani penyakit ini. Sedangkan makrolid (azitromisin) atau fluoroquinolones (moxifloxacin) merupakan pengobatan standar untuk pneumonia legionella pada manusia

Pencegahan perkembangan bakteri legionella bisa dilakukan dengan cara minimal seminggu sekali dilakukan pemeriksaan penampungan air terhadap kerusakan fisik, bau dan zat organic serta keberadaan serbuk-serbuk yang mengandung legionella.

Pandangan Islam Terhadap Bakteri Patogen Pada Saluran Pernafasan

Adanya pemisahan ilmu pengetahuan dengan urusan agama yang terutama berhubungan dengan Tuhan sebagai sang Khalik yang menciptakan alam semesta. Ajaran islam mencakup seluruh aspek kehidupan, tak terkecuali masalah makan, Penyakit serta ALLAH telah menciptakan obat dari segala penyakit itu, Oleh karena itu bagi kaum muslimin, makanan di samping berkaitan dengan pemenuhan kebutuhan fisik, juga berkaitan dengan ruhani, iman, dan ibadah juga dengan identitas diri, bahkan dengan perilaku.

QS. Al-furqaan [25] : 2

Artinya:“Yang kepunyaan-Nya-lah kerajaan langit dan bumi, dan Dia tidak  mempunyai anak, dan tidak ada sekutu bagiNya dalam kekuasaan(Nya), dan dia telah menciptakan segala sesuatu, dan Dia menetapkan ukuran-ukurannya dengan serapi-rapinya”. (Qs. Al-furqaan : 2)

Sabda Rasulullah SAW :

Dasri Jabir berkata, “Rasulullah bersabda, bagi tiap-tiap penyakit itu ada obatnya, apa bila obat yang dengan penyakitnya maka ia sembuh dengan izin Allah.” (H.R. Muslim) .

  • Maksud dari ayat tersebut ialah : segala sesuatu yang dijadikan Tuhan diberi-Nya perlengkapan-perlengkapan dan persiapan-persiapan, sesuai dengan naluri, sifat-sifat dan fungsinya masing-masing dalam hidup.

QS. Al-Maaidah [5] : 87

Artinya :“Hai orang-orang yang beriman, janganlah kamu haramkan apa-apa yang baik yang telah Allah halalkan bagi kamu, dan janganlah kamu melampaui batas. Sesungguhnya Allah tidak menyukai orang-orang yang melampaui batas”. (Al-Maidah:87)

Sabda Rasulullah SAW :

“Sesungguhnya Allah menurunkan penyakit dan obat, dan menjadikan bagi setiap penyakit obatnya, maka (berobatlah kamu sekalian, tetapi) jangan berobat dengan yang haram.” (HR. Abu Dawud).

  • Maksud dari ayat tersebut ialah : makanlah yang halal dan jangan sampai melampui batas, jika sampai melampui batas kita akan mengalami kerugian bagi tubuh kita sendiri serta carilah dengan cara yang halal dan baik.

QS. An-nahl : 11

Artinya :“Dia menumbuhkan bagi kamu dengan air hujan itu tanam-tanaman; zaitun, korma, anggur dan segala macam buah-buahan. Sesungguhnya pada yang demikian itu benar-benar ada tanda (kekuasaan Allah) bagi kaum yang memikirkan”. (QS AN-NAHL :11)

Dalam Al-Qur’an An Nahl (16):114

Artinya:“Maka makanlah yang halal lagi baik dari rezki yang telah diberikan Allah kepadamu; dan syukurilah nikmat Allah, jika kamu hanya kepada-Nya saja menyembah”. (Qs. An-Nahl : 114)

 

DAFTAR PUSTAKA

Lay, Bibiana. W, dan Hastowo Sugoyo. 1992. Mikrobiologi. Jakarta : CV Rajawali.

Staf pengajar FKUI. 1994. Mikrobiologi Kedokteran. Binarupa Aksara: Jakarta

Wheller dan Volk. 1990. Mikrobiologi Dasar Edisi Kelima Jilid 2. Jakarta  : P.T. Gelora Aksara Pratama

http://mikrobia.wordpress.com/2008/05/12/bordetella-pertussis-batuk-rejan/

http://www.health.state.ny.us/diseases/communicable/legionellosis/fact_sheet.htm

http://www.cdc.gov/legionella/patient_facts.htm

http://www.bmb.leeds.ac.uk/mbiology/ug/ugteach/icu8/introduction/bacteria.html

http://www.who.int/immunization/REH_47_8_pages.pdf

http://emedicine.medscape.com/article/218271-overview

http://www.healthsystem.virginia.edu/UVaHealth/peds_infectious/hii.cfm

http://www.cdc.gov/ncidod/aip/research/spn.html

http://en.wikipedia.org/wiki/Corynebacterium_diphtheriae

http://textbookofbacteriology.net/diphtheria_2.html


Follow

Get every new post delivered to your Inbox.

Join 61 other followers